• Title/Summary/Keyword: shot noise

Search Result 107, Processing Time 0.024 seconds

A new analysis on timing jitters in APD receivers of optical communication systems when considering intersymbol interferences (APD를 사용하는 광통신 시스템 수신기에서 심벌간 간섭을 고려할 경우 타이밍 지터에 대한 새로운 해석)

  • 신요안;은수정;김부균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.3
    • /
    • pp.539-546
    • /
    • 1997
  • In this paper, we proposed a new mehtod to analyze the performance degradation by timing jitters in the APD (avalanche photodiode) receivers of intensity modulation/direct detection digital optical communication systems where raised cosine pulse-shaping filters are used to reduce the effect of noise while minimizing intersymbol interferences. The proposed analytical method is an extension of an analytical method we have already developed for pin diode receivers, and incorporates the effects of APD's multiplication factor and resulting shot noise. Using the proposed analytical method, we derive an approximated power penalty due to timing jitters based on an assumption of Gaussian distribution for timing jitters, and compare with that of the conventional analytical method. The results obtained from the proposed analytical method show that conventional analytical methods underestimate the influence of timing jitters on the reciver performance. The results also show that APD's multiplication factor which optimizes receiver sensitivity is smaller than that obtained by the conventional analytical method.

  • PDF

Crank Angle Analysis

  • Gade, Svend;Hald, Jorgen
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1040-1043
    • /
    • 2001
  • This paper describes the principle behind Crank Angle Analysis, as implemented by Bruel & Kjaer in the Non-Stationary Spatial Transformation of Sound Fields (NS-STSF) system. The NS-STSF system combines a Time Domain Holography measurement on for example an engine with two simultaneously recorded Tacho signals. The Tacho signals provide the crankshaft angle and the RPM at the instant of each instantaneous output (snap-shot) from Time Domain Holography. As a result, the system allows precise analysis of the temporal and spatial relation between the acoustical emission (or the vibration pattern) and the mechanical events during an engine cycle. Some results from a measurement on a DaimlerChrysler engine are presented.

  • PDF

A Study on the 2-D distribution of Dynamic Poisson's Ratio using 3-C Geophones (3성분 지오폰을 이용한 동포아송비의 2차원 분포 연구)

  • Hong, Myung-Ho;Hwang, Yoon-Gu;Cho, Cheol-Hee;Lee, Yoon-Jung;Kim, Ki-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.223-226
    • /
    • 2005
  • In order to acquire 3 components data which has the good signal to noise ratio with only one shot, 3-C geophones were used, As a result, the vertical component showed the distinct first arrival of P-wave, and the horizontal component was improved the signal to noise ratio of S-wave, while was attenuated P-wave. The 2-D Poisson's ratio section was computed from P- and S-wave cell velocities included velocity tomograms of the P- and S-waves. The Poisson's ratio values were computed in the range of $0.2{\~}0.3$. With one shot, we can obtain 2-D distribution of dynamic Poisson's ratio as well as velocity tomograms of P- and S-waves.

  • PDF

Measurement of the degree of second order temporal coherence $g_s^{(2)}({\tau})$ of a laser speckle backscattered from a rotating randomly rough metal surface (회전하는 거친금속표면에서 후방산란되어 형성된 레이저 스펙클의 세기의 시간상관함수 $g_s^{(2)}({\tau})$의 측정)

  • 안성준;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.161-166
    • /
    • 1992
  • The s-polarized laser beam is incident with an angle ~$-30^{\circ}$ to a uniformly rotating rough metal surface and the degree of second order temporal coherence $g_{s}^{(2)}(\tau)$ of the backscattered wave, which has the same polarization with the incident laser beam, is measured. The contribution of shot noise involved in the measurement of $g_{s}^{(2)}(0)$ is subtracted from the photoelectric signal to obtain the accurate value of $g_{s}^{(2)}(0)$.At each scattering angle$\theta_{s}$에서$g_{s}^{(2)}(\tau)$ is almost consistent with the function {1+exp($-\tau^2/\tau_0^2$)}, which is the same result with the case of the laser speckle formed by scattering on the rotating ground glass suface. In addition, a peak in the angular distribution of $\tau_0$ is observed with the maximum at$\theta_s=34^{\circ}$.It is found that the rough metallic scattering with multiple scattering over than 10% has the same function of the degree of second order temporal coherence with that of the ground glass surface scattering where the multiple scattering is ignorably small.

  • PDF

Denoise of Astronomical Images with Deep Learning

  • Park, Youngjun;Choi, Yun-Young;Moon, Yong-Jae;Park, Eunsu;Lim, Beomdu;Kim, Taeyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.54.2-54.2
    • /
    • 2019
  • Removing noise which occurs inevitably when taking image data has been a big concern. There is a way to raise signal-to-noise ratio and it is regarded as the only way, image stacking. Image stacking is averaging or just adding all pixel values of multiple pictures taken of a specific area. Its performance and reliability are unquestioned, but its weaknesses are also evident. Object with fast proper motion can be vanished, and most of all, it takes too long time. So if we can handle single shot image well and achieve similar performance, we can overcome those weaknesses. Recent developments in deep learning have enabled things that were not possible with former algorithm-based programming. One of the things is generating data with more information from data with less information. As a part of that, we reproduced stacked image from single shot image using a kind of deep learning, conditional generative adversarial network (cGAN). r-band camcol2 south data were used from SDSS Stripe 82 data. From all fields, image data which is stacked with only 22 individual images and, as a pair of stacked image, single pass data which were included in all stacked image were used. All used fields are cut in $128{\times}128$ pixel size, so total number of image is 17930. 14234 pairs of all images were used for training cGAN and 3696 pairs were used for verify the result. As a result, RMS error of pixel values between generated data from the best condition and target data were $7.67{\times}10^{-4}$ compared to original input data, $1.24{\times}10^{-3}$. We also applied to a few test galaxy images and generated images were similar to stacked images qualitatively compared to other de-noising methods. In addition, with photometry, The number count of stacked-cGAN matched sources is larger than that of single pass-stacked one, especially for fainter objects. Also, magnitude completeness became better in fainter objects. With this work, it is possible to observe reliably 1 magnitude fainter object.

  • PDF

Class Specific Autoencoders Enhance Sample Diversity

  • Kumar, Teerath;Park, Jinbae;Ali, Muhammad Salman;Uddin, AFM Shahab;Bae, Sung-Ho
    • Journal of Broadcast Engineering
    • /
    • v.26 no.7
    • /
    • pp.844-854
    • /
    • 2021
  • Semi-supervised learning (SSL) and few-shot learning (FSL) have shown impressive performance even then the volume of labeled data is very limited. However, SSL and FSL can encounter a significant performance degradation if the diversity gap between the labeled and unlabeled data is high. To reduce this diversity gap, we propose a novel scheme that relies on an autoencoder for generating pseudo examples. Specifically, the autoencoder is trained on a specific class using the available labeled data and the decoder of the trained autoencoder is then used to generate N samples of that specific class based on N random noise, sampled from a standard normal distribution. The above process is repeated for all the classes. Consequently, the generated data reduces the diversity gap and enhances the model performance. Extensive experiments on MNIST and FashionMNIST datasets for SSL and FSL verify the effectiveness of the proposed approach in terms of classification accuracy and robustness against adversarial attacks.

Prospective Comparison of FOCUS MUSE and Single-Shot Echo-Planar Imaging for Diffusion-Weighted Imaging in Evaluating Thyroid-Associated Ophthalmopathy

  • YunMeng Wang;YuanYuan Cui;JianKun Dai;ShuangShuang Ni;TianRan Zhang;Xin Chen;QinLing Jiang;YuXin Cheng;YiChuan Ma;Tuo Li;Yi Xiao
    • Korean Journal of Radiology
    • /
    • v.25 no.10
    • /
    • pp.913-923
    • /
    • 2024
  • Objective: To prospectively compare single-shot (SS) echo-planar imaging (EPI) and field-of-view optimized and constrained undistorted single-shot multiplexed sensitivity-encoding (FOCUS MUSE) for diffusion-weighted imaging (DWI) in evaluating thyroid-associated ophthalmopathy (TAO). Materials and Methods: SS EPI and FOCUS MUSE DWIs were obtained from 39 patients with TAO (18 male; mean ± standard deviation: 48.3 ± 13.3 years) and 26 healthy controls (9 male; mean ± standard deviation: 43.0 ± 18.5 years). Two radiologists scored the visual image quality using a 4-point Likert scale. The image quality score, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) of extraocular muscles (EOMs) were compared between the two DWIs. Differences in the ADC of EOMs were also evaluated. The performance of discriminating active from inactive TAO was assessed using receiver operating characteristic curves. The correlation between ADC and clinical activity score (CAS) was analyzed using Spearman correlation. Results: Compared with SS EPI DWI, FOCUS MUSE DWI demonstrated significantly higher image quality scores (P < 0.001), a higher SNR and CNR on the lateral rectus muscle (LRM) and medial rectus muscle (MRM) (P < 0.05), and a non-significant difference in the ADC of the LRM and MRM. Active TAO showed higher ADC than inactive TAO and healthy controls with both SS EPI and FOCUS MUSE DWIs (P < 0.001). Inactive TAO and healthy controls did not show a significant ADC difference with both DWIs. Compared with SS EPI DWI, FOCUS MUSE DWI demonstrated better discrimination of active from inactive TAO (AUC: 0.925 vs. 0.779; P = 0.007). The ADC was significantly correlated with CAS in SS EPI DWI (r = 0.391, P < 0.001) and FOCUS MUSE DWI (r = 0.645, P < 0.001). Conclusion: FOCUS MUSE DWI provides better images for evaluating EOMs and better performance in diagnosing active TAO than SS EPI DWI. The application of FOCUS MUSE will facilitate the DWI evaluation of TAO.

Study on Localized Corrosion Cracking of Alloy 600 using EN-DCPD Technique (EN-DCPD 방법을 이용한 Alloy 600 재료의 국부부식균열 연구)

  • Lee, Yeon-Ju;Kim, Sung-Woo;Kim, Hong-Pyo;Hwang, Seong-Sik
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.93-101
    • /
    • 2013
  • The object of this work is to establish an electrochemical noise(EN) measurement technique combined with a direct current potential drop(DCPD) method for monitoring of localized corrosion cracking of nickel-based alloy, and to analyze its mechanism. The electrochemical current and potential noises were measured under various conditions of applied stress to a compact tension specimen in a simulated primary water chemistry of a pressurized water reactor. The amplitude and frequency of the EN signals were evaluated in both time and frequency domains based on a shot noise theory, and then quantitatively analyzed using statistical Weibull distribution function. From the spectral analysis, the effect of the current application in DCPD was found to be effectively excluded from the EN signals generated from the localized corrosion cracking. With the aid of a microstructural analysis, the relationship between EN signals and the localized corrosion cracking mechanism was investigated by comparing the shape parameter of Weibull distribution of a mean time-to-failure.

Few-Shot Image Synthesis using Noise-Based Deep Conditional Generative Adversarial Nets

  • Msiska, Finlyson Mwadambo;Hassan, Ammar Ul;Choi, Jaeyoung;Yoo, Jaewon
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.79-87
    • /
    • 2021
  • In recent years research on automatic font generation with machine learning mainly focus on using transformation-based methods, in comparison, generative model-based methods of font generation have received less attention. Transformation-based methods learn a mapping of the transformations from an existing input to a target. This makes them ambiguous because in some cases a single input reference may correspond to multiple possible outputs. In this work, we focus on font generation using the generative model-based methods which learn the buildup of the characters from noise-to-image. We propose a novel way to train a conditional generative deep neural model so that we can achieve font style control on the generated font images. Our research demonstrates how to generate new font images conditioned on both character class labels and character style labels when using the generative model-based methods. We achieve this by introducing a modified generator network which is given inputs noise, character class, and style, which help us to calculate losses separately for the character class labels and character style labels. We show that adding the character style vector on top of the character class vector separately gives the model rich information about the font and enables us to explicitly specify not only the character class but also the character style that we want the model to generate.

Frequency dependent squeezing for gravitational wave detectors using filter cavity and international collaboration of a filter cavity project for KAGRA (중력파 검출기의 양자 잡음 저감을 위한 필터 공동기 기반 주파수 의존 양자조임 기술과 KAGRA의 필터 공동기 제작을 위한 국제협력연구)

  • Park, June Gyu;Lee, Sungho;Kim, Chang-Hee;Kim, Yunjong;Jeong, Ueejeong;Je, Soonkyu;Seong, Hyeon Cheol;Han, Jeong-Yeol
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.37.3-38
    • /
    • 2021
  • Radiation pressure noise of photon and photon shot noise are quantum noise limitation in interferometric gravita-tional wave detectors. Since relationship between the two noises is position and momentum of the Heisenberg uncertainty principle, quantum non-demolition (QND) technique is required to reduce the two noises at the same time. Frequency dependent squeezing using a filter cavity is one of realistic solutions for QND measurement and experimental results show that its cutting-edge performance is sufficient to apply to the current gravitational wave detectors. A 300m filter cavity is under construction at adv-LIGO. KAGRA (gravitational wave detector in Japan) has also started international collaboration to build a filter cavity. Recently we joined the filter cavity project for KAGRA. Current status of squeezing and filter cavity research at KASI and details of the KAGRA filter cavity project will be presented.

  • PDF