• Title/Summary/Keyword: short-time creep

Search Result 56, Processing Time 0.029 seconds

Prediction of Creep Stress in High Temperature Piping System Using Elastic Follow-up Factor (탄성추종계수를 이용한 고온 배관계의 크리프 응력 예측)

  • Seo, Jun-Min;Youn, Gyo-Geun;Lee, Hyun-Jae;Oh, Young-Jin;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.32-37
    • /
    • 2018
  • When designing high temperature piping system, creep phenomena must be considered. Since ASME code does not provide detailed methods of design by rule (DBR) for high temperature piping, Finite element analysis should be performed. However, In the case of piping system with frequent design changes, creep analysis of the entire piping system for every change is ineffective and practically impossible. Therefore, based on elastic and elastic-plastic analysis, which takes a relatively short time, the creep stress is predicted by using elastic follow-up factor method provided in R5 code and plastic-creep analogy presented by Hoff. The predicted creep stress for a virtual piping system was compared with the creep analysis result and the two results showed similar stress relaxation tendency in time.

Creep Life Prediction of Type 316LN Steel Using Minimum Commitment Method (최소구속법을 이용한 Type 316LN 강의 크리프 수명 예측)

  • Kim W.G.;Yoon S.N.;Ryu W.S.;Yi W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.295-298
    • /
    • 2005
  • A minimum commitment method (MCM) was applied to predict the creep rupture life of type 316LN SS. For this purpose, a number of the creep rupture data for the type 316LN SS were collected through literature survey and experimental data of KAERl, Using the short-term creep rupture data under 2000 hr, the long-term creep rupture life above $10^5$ hour was predicted by means of the MCM. An optimum value of A, P and G function, used in the MCM equation, was determined respectively, and the creep rupture life with the A values in different temperatures was compared with the experimental data and the predicted curves.

  • PDF

Creep Life Prediction and Error Analysis for Type 316LN Stainless Steel (Type 316LN 스테인리스강의 크리프 수명예측과 오차분석)

  • Yi W.;Yin S.N.;Kim W.G.;Ryu W.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.109-110
    • /
    • 2006
  • Various parametric methods, Larson-Miller (L-M), Orr-Sherby-Dorn (O-S-D), Manson-Haferd (M-H) parameters, and minimum commitment method (MCM), were used to predict longer rupture time from short-term creep data. A number of the creep data were collected through literature surveys and experimental data produced in KAERI for predicting the creep type of type 316LN SS. Polynomial equations for predicting the creep life were obtained by the time-temperature parameters (TTP) and the MCM. standard error (SE) and standard error or mean (SEM) values were compared for the each method with temperatures. The TTP methods were good in the creep-life prediction, but the MCM was much superior to the TTP ones at $700^{\circ}C\;and\;750^{\circ}C$. The MCM was found to be lower in the SE values compared to the TTP methods

  • PDF

Prediction of Creep Deformation and Short Time Rupture Life of AZ31 Magnesium Alloy below 0.5Tm (0.5Tm 이하에서의 AZ31 마그네슘합금의 크리이프 변형과 단시간 파단수명예측)

  • Kang, D.M.;An, J.O.;Jeon, S.H.;Koo, Y.;Sim, S.B.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.558-563
    • /
    • 2008
  • The initial strain, the applied stress exponent, the activation energy, and rupture time in AZ31 magnesium alloy have been measured in order to predict the deformation mechanism and rupture life of creep over the temperature range of 423-443K. Creep tests were carried out under constant applied stress and temperature, and the lever type tester and automatic temperature controller was used for it, respectively. The experimental results showed that the applied stress exponent was about 9.74, and the activation energy for creep, 113.6KJ/mol was less than that of the self diffusion of Mg alloy including aluminum. From the results, the mechanism for creep deformation seems to be controlled by cross slip at the temperature range of 423-443K. Also the higher the applied stress and temperature, the higher the initial strain. And the rupture time for creep decreased as quadratic function with increasing the initial strain in double logarithmic axis.

Short-time creep, fatigue and mechanical properties of 42CrMo4 - Low alloy structural steel

  • Brnic, Josip;Canadija, Marko;Turkalj, Goran;Krscanski, Sanjin;Lanc, Domagoj;Brcic, Marino;Gao, Zeng
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.875-888
    • /
    • 2016
  • The proper selection of materials for the intended use of the structural member is of particular interest. The paper deals with determining both the mechanical properties at different temperatures and the behavior in tensile creep as well as fatigue testing of tensile stressed specimens made of low alloy 42CrMo4 steel delivered as annealed and cold drawn. This steel is usually used in engineering practice in design of statically and dynamically stressed components. Displayed engineering stress - strain diagrams indicate the mechanical properties, creep curves indicate the material creep behavior while experimental investigations of fatigue may ensure the fatigue limit determination for considered stress ratio. Also, hardness testing provides an insight into material resistance to plastic deformation. Experimentally obtained results regarding material properties were: tensile strength (735 MPa / $20^{\circ}C$, 105 MPa / $680^{\circ}C$), yield strength (593 MPa / $20^{\circ}C$, 76 MPa / $680^{\circ}C$). Fatigue limit in the amount of 532.26 MPa, as maximum stress at stress ratio R = 0.25 at ambient temperature was calculated on the basis of experimentally obtained results. Regarding the creep resistance it is visible that this steel can be treated as creep resistant at high temperatures (including $580^{\circ}C$) when applied stress is of low level (till 0.2 of yield stress).

Creep-Life Prediction and Its Error Analysis by the Time Temperature Parameters and the Minimum Commitment Method (시간-온도 파라미터법과 최소구속법에 의한 크리프 수명예측과 오차 분석)

  • Yin, Song-Nan;Ryu, Woo-Seog;Yi, Won;Kim, Woo-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.160-165
    • /
    • 2007
  • To predict long-term creep life from short-term creep life data, various parametric methods such as Larson-Mille. (L-M), Orr-Sherby-Dorn (O-S-D), Manson-Haferd (M-H) parameters, and a Minimum Commitment Method (MCM) were suggested. A number of the creep data were collected through literature surveys and experimental data produced in KAERI. The polynomial equations for type 316LN SS were obtained by the time-temperature parameters (TTP) and the MCM. Standard error (SE) and standard error of mean (SEM) values were obtained and compared with the each method for various temperatures. The TTP methods showed good creep-life prediction, but the MCM was much superior to the TTP ones at $700^{\circ}C$ and $750^{\circ}C$. It was found that the MCM were lower in the SE values when compared to the TTP methods.

Evaluation of Physical Properties and Long-term Stability of Expansion Materials for Emergency Repair by Temperature (긴급복구용 팽창재료의 온도에 따른 물리적 특성 및 장기 안전성 평가)

  • Park, Jeongjun;Kim, Kisung;Kang, Hyounhoi;Kim, Ju-Ho;Hong, Gigwon
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.1
    • /
    • pp.79-88
    • /
    • 2018
  • In this study, the changes of the expansion and strength according to the temperature of the emergency repairing expansion material were examined by cup foaming test and uniaxial compressive strength test, and the accelerated compression creep test was carried out to confirm the long term stability. Ramp & Hold test and accelerated compressive creep test were performed to evaluate the creep performance. The short - term creep test was used to determine the initial creep strain of the expanding material. The isothermal method using time - To evaluate the long - term compressive creep performance.

The Effect of Tensile Hold time on the Fatigue Crack Propagation Property and Grain Size on the Creep Behavior in STS 316L. (STS316L의 고온피로균열에 미치는 인장유지시간의 효과 및 결정립크기에 따른 크리프 거동에 관한 연구)

  • 김수영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.373-378
    • /
    • 2000
  • The heat resistant material, in service, may experience static loading, cyclic loading, or a combination of two. An experimental study of crack growth behavior of STS 316L austenitic stainless steel under fatigue, and creep-fatigue loading conditions were carried out on compact tension specimens at various tensile hold times. In the crack growth experiments under hold times. In the crack growth experiments under hold time loading conditions, tensile hold times were ranged from 5 seconds to 100 seconds and its behavior was characterized using the $\Delta$K parameter. The crack growth rates generally increase with increasing hold times. However in this material, the trend of crack growth rates decreases with increasing hold times for short hold time range relatively. It is attributed to a decline in the cyclic crack growth rate as a result of blunting at the crack tip by creep deformation. The effect of grain size on the creep behavior of STS 316L was investigated. Specimens with grain size of 30, 65 and 125${\mu}{\textrm}{m}$ were prepared through various heat treatments and they were tested under various test conditions. The fracture mode of 316L changed from transgranular to intergranular with increasing grain size.

  • PDF

Tensile Properties and Creep Rupture Characteristics of Cu-1Cr-0.5Zr/STS316L Friction Welded Joints at Elevated Temperature (Cu-1Cr-0.5Zr 합금과 STS316L강의 마찰용접재의 고온 인장 성질과 크리프 파단 특성)

  • Yoo, I.J.;Kong, Y.S.;Kim, S.J.
    • Journal of Power System Engineering
    • /
    • v.6 no.4
    • /
    • pp.49-55
    • /
    • 2002
  • In this paper, the elevated temperature tensile properties and short-time creep rupture characteristics were investigated for the friction welded joints of dissimilar materials, Cu-1%Cr-0.5%Zr and STS316L. The joining tests on Cu-1%Cr-0.5%Zr/STS316L by friction welding were performed, and optimum joining conditions of the friction welded joints were determined. The characteristics of the elevated temperature tensile strength, hardness, fractographs were examined, and the creep rupture characteristics for the optimum welded joints were investigated under uniaxal static load at 300, 400 and $500^{\circ}C$.

  • PDF

Studies on Rheological Properties of Rice Plants at the Booting Stage (이삭 밸 때 벼의 리올러지 특성(特性)에 관한 연구(硏究))

  • Hu, Y.K.;Lee, S.W.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.1
    • /
    • pp.37-48
    • /
    • 1991
  • Rice plants are subjected to various forces such as natural force of wind and mechanical force of cultivating machines. Rheological behavior of the rice stem can be expressed in terms of three variables : stress, relaxation and time. The objectives of this study are to examine stress relaxation, creep and recovery characteristics on the rice stem in case of axial and radial loading. Stress relaxation with time was studied on three levels of loading rate and on four levels of applied stress. The results were summarized as follows : 1. The hysterisis losses of the rice stem distinctly observed at the radial compression in comparison with axial compression. The hysterisis loss implied that the stem to absorbed energy without being deformed beyond the yield point. 2. Ageneralized Maxwell model consisting of three elements gave a good description of the relaxation behavior of the rice stem. Rate of loading was more significant on the observed relaxation behavior within the short relaxation time, but there were little influences of rate of loading on the relaxation time. 3. The stress relaxation intensity and the residual stress increased in magnitude as the applied stress increased, but the relaxation time was little affected by the applied stress. 4. The coefficients of the stress relaxation model showed much differences in the radial compression and the axial compression, especially the higher relaxation stress of the third element was observed in the radial compression. 5. The behaviors of rice stem in creep and recovery test also might be represented by a four element Burger's model. But the coefficients of the creep model were different from those of the recovery model. 6. The steady-state phenomena of creep appeared at the stress larger than 20 MPa in Samkang and 1.8 MPa in Whajin. 7. The elastic modulus of the stem showed the range from 40 to 60 MPa. It could be considered, as a result, the rice stems had viscoelastic properties.

  • PDF