• Title/Summary/Keyword: short columns

Search Result 192, Processing Time 0.031 seconds

Axial compression behavior of circular recycled concrete-filled steel tubular short columns reinforced by silica fume and steel fiber

  • Chen, Juan;Liu, Xuan;Liu, Hongwei;Zeng, Lei
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.193-200
    • /
    • 2018
  • This paper presents an experimental work for short circular steel tube columns filled with normal concrete (NAC), recycled aggregate concrete (RAC), and RAC with silica fume and steel fiber. Ten specimens were tested under axial compression to research the effect of silica fume and steel fiber volume percentage on the behavior of recycled aggregate concrete-filled steel tube columns (RACFST). The failure modes, ultimate loads and axial load- strain relationships are presented. The test results indicate that silica fume and steel fiber would not change the failure mode of the RACFST column, but can increase the mechanical performances of the RACFST column because of the filling effect and pozzolanic action of silica fume and the confinement effect of steel fiber. The ultimate load, ductility and energy dissipation capacity of RACFST columns can exceed that of corresponding natural aggregate concrete-filled steel tube (NACFST) column. Design formulas EC4 for the load capacity NACFST and RACFST columns are proposed, and the predictions agree well with the experimental results from this study.

Evaluation of R/C Short Columns Strength by Concrete Compressive Strength and Transverse Reinforcement Ratios (콘크리트 압축강도와 띠철근의 체적비에 따른 R/C 단주의 내력평가)

  • 김경회;김재환;한범석;반병열;이광수;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.505-508
    • /
    • 1999
  • To evaluate the strength of square reinforced concrete shot columns, thirty specimens were manufactured and tested under monotonically increasing concentric compression. The test parameters included the volumetric ratio of transverse reinforcement($\rho$h = 0.49~2.65), and concrete compressive strength (234, 437, 704 kgf/$\textrm{cm}^2$). Test results are shown that : (1) Behavior of high -strength concrete column is improved by providing increased volumetric ratio; and (2) ACI, Eq. is not proper to evaluate HSC short column strength.

  • PDF

Analysis and Design of RC Short Columns in biaxial bending and Compression using Spreadsheets (스프레드시트를 이용한 2축 휨과 압축을 받는 철근 콘크리트 단주의 해석 및 설계)

  • 진치섭;엄장섭;노경배;박현재;이승훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.627-632
    • /
    • 1998
  • This study developed practical computer program COL2 to design of generic shape reinforced concrete short columns subjected to combined compression and biaxial bending. The program COL2 has been developed for user-friendly environment using Excel 97 for windows 95. Several examples including for analysis of geometrically complex column sections subjected biaxial bending are included in this paper.

  • PDF

Seismic behaviour of RC columns with welded rebars or mechanical splices of reinforcement

  • Kalogeropoulos, George I.;Tsonos, Alexander-Dimitrios G.;Konstantinidis, Dimitrios
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.297-306
    • /
    • 2019
  • The extension of existing RC buildings is a challenging process, which requires efficient connection between existing and new materials to guarantee load transferring between the lap-spliced longitudinal columns' reinforcement. Therefore, the length of the columns' starter bars is a crucial factor, which decisively affects the seismic response of the new columns. In particular, when the length of the starter bars is short, then the length of the lap splices of reinforcement is inadequate to ensure load transfer between steel bars and concrete, with an indisputable detrimental impact on the seismic behaviour of the columns. Moreover, in most of the existing RC buildings the column starter bars are of particularly short length, while they have probably been bent, cut or corroded. In the present study, the effectiveness of both welded rebar and mechanical splices of reinforcement in ensuring load transferring between the starter bars and the longitudinal reinforcement of the new column was experimentally evaluated. Four cantilever column subassemblages were constructed and subjected to earthquake-type loading. Three of the specimens were used to examine different types of shielded metal arc welding (SMAW), while in the fourth subassemblage mechanical splices were tested. The hysteretic response of the columns was evaluated and compared to the behaviour of a fifth specimen with continuous reinforcement, tested by Kalogeropoulos and Tsonos (2019). Test results clearly demonstrated that the examined types of SMAW were equally satisfactory in ensuring the ductile seismic performance of the columns, while the mechanical splices found to be more susceptible to exhibit slipping of the bars.

RELATIONS OF SHORT EXACT SEQUENCES CONCERNING AMALGAMATED FREE PRODUCTS

  • Shin, Woo Taeg
    • Korean Journal of Mathematics
    • /
    • v.14 no.2
    • /
    • pp.217-226
    • /
    • 2006
  • In this paper, we investigate the mutual relation among short exact sequences of amalgamated free products which involve augmentation ideals and relation modules. In particular, we find out commutative diagrams having a steady structure in the sense that all of their three columns and rows are short exact sequences.

  • PDF

Wind-induced fatigue loading of tubular steel lighting columns

  • Robertson, A.P.;Hoxey, R.P.;Short, J.L.;Burgess, L.R.;Smith, B.W.;Ko, R.H.Y.
    • Wind and Structures
    • /
    • v.4 no.2
    • /
    • pp.163-176
    • /
    • 2001
  • Two 12 m high tubular steel lighting columns have been instrumented to determine the wind-induced fatigue loading experienced by such columns. Each column supported a single luminaire mounted on a 0.5 m long bracket. One column was planted in soil, and the other bolted through a welded baseplate to a substantial concrete base. The columns were strain gauged just above the shoulder weld which connected the main shaft to the larger base tube. Forced vibration tests were undertaken to determine the natural frequencies and damping of the columns. Extensive recordings were made of response to winds with speeds from 4 m/s to 17 m/s. Selected records were analysed to obtain stress cycle counts and fatigue lives. Mean drag coefficients were also derived from the strain data to investigate experimentally the effect of Reynolds Number.

Behavior of Square Concrete Columns Confined by FRP Composites (FRP 합성재료에 의하여 구속된 정사각형 콘크리트 기둥의 거동)

  • Cho, Soon-Ho;Bang, Se-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.215-218
    • /
    • 2005
  • Three series of 36 short square columns confined by wraps, full shells and partial shells were tested by varying the thickness of GFRP laminates. An assessment of the effectiveness of the existing model on confinement of concrete columns with FRP was made. Test results indicated moderate increases in strength, but significantly enhanced deformability compared with those in unconfined concrete, particularly the warp and full shell confinement.

  • PDF

Axial compressive strength of short steel and composite columns fabricated with high stength steel plate

  • Uy, B.
    • Steel and Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.171-185
    • /
    • 2001
  • The design of tall buildings has recently provided many challenges to structural engineers. One such challenge is to minimise the cross-sectional dimensions of columns to ensure greater floor space in a building is attainable. This has both an economic and aesthetics benefit in buildings, which require structural engineering solutions. The use of high strength steel in tall buildings has the ability to achieve these benefits as the material provides a higher strength to cross-section ratio. However as the strength of the steel is increased the buckling characteristics become more dominant with slenderness limits for both local and global buckling becoming more significant. To arrest the problems associated with buckling of high strength steel, concrete filling and encasement can be utilised as it has the affect of changing the buckling mode, which increases the strength and stiffness of the member. This paper describes an experimental program undertaken for both encased and concrete filled composite columns, which were designed to be stocky in nature and thus fail by strength alone. The columns were designed to consider the strength in axial compression and were fabricated from high strength steel plate. In addition to the encased and concrete filled columns, unencased columns and hollow columns were also fabricated and tested to act as calibration specimens. A model for the axial strength was suggested and this is shown to compare well with the test results. Finally aspects of further research are addressed in this paper which include considering the effects of slender columns which may fail by global instabilities.

Performance of fire damaged steel reinforced high strength concrete (SRHSC) columns

  • Choi, Eun Gyu;Kim, Hee Sun;Shin, Yeong Soo
    • Steel and Composite Structures
    • /
    • v.13 no.6
    • /
    • pp.521-537
    • /
    • 2012
  • In this study, an experimental study is performed to understand the effect of spalling on the structural behavior of fire damaged steel reinforced high strength concrete (SRHSC) columns, and the test results of temperature distributions and the displacements at elevated temperature are analyzed. Toward this goal, three long columns are tested to investigate the effect of various test parameters on structural behavior during the fire, and twelve short columns are tested to investigate residual strength and stiffness after the fire. The test parameters are mixture ratios of polypropylene fiber (0 and 0.1 vol.%), magnitudes of applied loads (concentric loads and eccentric loads), and the time period of exposure to fire (0, 30, 60 and 90 minutes). The experimental results show that there is significant effect of loading on the structural behaviors of columns under fire. The loaded concrete columns result more explosive spalling than the unloaded columns under fire. In particular, eccentrically loaded columns are severely spalled. The temperature distributions of the concrete are not affected by the loading state if there is no spalling. However, the loading state affects the temperature distributions when there is spalling occurred. In addition, it is found that polypropylene fiber prevents spalling of both loaded and unloaded columns under fire. From these experimental findings, an equation of predicting residual load capacity of the fire damaged column is proposed.

Finite element modeling of RC columns made of inferior concrete mix strengthened with CFRP sheets

  • Khaled A. Alawi, Al-Sodani;Muhammad Kalimur ,Rahman;Mohammed A., Al-Osta;Omar S. Baghabra, Al-Amoudi
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.403-417
    • /
    • 2022
  • Reinforced concrete (RC) structures with low-strength RC columns are rampant in several countries, especially those constructed during the early 1960s and 1970s. The weakness of these structures due to overloading or some natural disasters such as earthquakes and building age effects are some of the main reasons to collapse, particularly with the scarcity of data on the impact of aspect ratio and corner radius on the confinement effectiveness. Hence, it is crucial to investigate if these columns (with different aspect ratios) can be made safe by strengthening them with carbon fiber-reinforced polymers (CFRP) sheets. Therefore, experimental and numerical studies of CFRP-strengthened low-strength reinforced concrete short rectangular, square, and circular columns were studied. In this investigation, a total of 6 columns divided into three sets were evaluated. The first set had two circular cross-sectional columns, the second set had two square cross-section columns, and the third set has two rectangular cross-section columns. Furthermore, FEM validation has been conducted for some of the experimental results obtained from the literature. The experimental results revealed that the confinement equations for RC columns as per both CSA and ACI codes could give incorrect results for low-strength concrete. The control specimen (unstrengthened ones) displayed that both ACI and CSA equations overestimate the ultimate strength of low-strength RC columns by order of extent. For strengthened columns with CFRP, the code equations of CSA and ACI code overestimate the maximum strength by around 6 to 13% and 23 to 29%, respectively, depending on the cross-section of the column (i.e., square, rectangular, or circular). Results of finite element models (FEMs) showed that increasing the layer number of new commonly CFRP type (B) from one to 3 for circular columns can increase the column's ultimate loads by around eight times compared to unjacketed columns. However, in the case of strengthened square and rectangular columns with CFRP, the increase of the ultimate loads of columns can reach up to six times and two times, respectively.