• Title/Summary/Keyword: shoot dry weight

Search Result 499, Processing Time 0.034 seconds

Spatial Distribution of Rice Root under Long-term Chemical and Manure Fertilization in Paddy (화학비료 및 희비 장기시용에 따른 벼 뿌리 분포 특성)

  • 전원태;박창영;조영손;박기도;윤을수;강위금;박성태;최진용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.484-489
    • /
    • 2003
  • It is well known that root distribution of rice is a crucial factor for nutrient absorbtion and affect by soil fertility management. However, the findings on root distribution are limited due to laborious and tedious work. The characteristics of root distribution were investigated in long-term fertilizer experiment plots that were established in paddy soil, a fine silty family of typic Hal-paqueps (Pyeongtaeg series) in 1967. fertilizer experiment plots of no fertilizer, compost, NPK and NPK+compost plot have been maintained consistently for the past thirty six year and Npk+silicate plot for the past twenty two years. In NPK plot, 150kg N (urea), 100kg -$\textrm{P}_2\textrm{O}_5$ (fused phosphate) and 100kg $\textrm{K}_2\textrm{O}$(potassium chloride) per hectare have been applied. For NPK+silicate plot, 500kg $\textrm{Si}\textrm{O}_2$ (silicate) was applied in addition to fertilizer in NPK plot. For the compost plot, 10,000kg rice straw compost per hectare were applied. Root samples were taken from the positions of hill-center (below hill) and mid-point of four adjacent rice hills at heading stage by cylinder monolith (CM) method. The soil cores were sampled 20cm depth from the soil surface and partitioned four into layers at an interval of 5cm. The soil particles surrounding roots were washed out with tap water, Length and weight of the roots in each soil layer were measured and root length density (RLD), root weight density (RWD), specific root length(SRL) and rooting depth index (RDI) were calculated. Total root length was measured by intersection method. Plant height, tiller and shoot dry weight were the highest in NPK+compost plot. But RLD of hill-center soil cores was the highest in no-fertilizer plots. In the soil cores from mid-point position of four adjacent hills, RLD at 15-20cm soil depth was higher in compost plot than NPK plot. RLD in compost plots showed even distribution compared to those in chemical- fertilizer plots. RWD was the highest in the NPK+compost plot. SRL was the lowest in the NPK+silicate plot. RDI was the highest in the compost plot. Also, in this experiment it was found that the distribution of roots was closely related to the physical properties of the soil as affected by fertilization management.

The Effect of Rubber Banding Material on Root Development after Transplanting of Landscape Trees - For Pine Trees - (고무밴드 결속재가 조경수목 이식 후 뿌리발달에 미치는 영향 - 소나무류를 대상으로 -)

  • Park, Hyun;Park, Yong-Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.52-62
    • /
    • 2015
  • This study conducted an experiment to clarify the effect of rubber bands used as a root connector during the process of transplanting landscape trees on the development of the root system and the rooting process. The research period was four years, from April 2007 to April 2011, and the test conducted for this study was performed at the experimental field located at 398-2 Bangdong-ri, Sacheon-myeon, Gangneung-si, Gangwon-do. Twenty 15-year-old Pinus densiflora Siebold & Zucc. with good growth conditions were harvested and transplanted from the forest in Jebi-ri, Gujeong-myeon, Gangneung-si, Gangwon-do for the field experiment. A completely randomized design was applied for plot design, with 10 pines without rubber bands and 10 pines with rubber bands. Pinus densiflora for. multicaulis Uyeki was selected as the official tree of the pot test and was planted in a transparent pot to observe the development of the root system. A completely randomized design was applied for plot design, with 3 pines without rubber bands and 3 pines with rubber bands. The results of this research on the effect of rubber bands used as a root connector on root system development and the rooting process are as follows. 1. The rate of height growth in the field test was 4.1% lower in the trees with rubber bands when compared to trees without rubber bands. Trees with rubber bands were 4.2% wider than those without rubber bands in root diameter. The chlorophyll content was 6.8% higher in trees without rubber bands, but the rate of height growth, root diameter, and chlorophyll content were not significantly correlated. 2. In the comparison of fresh root weight in the field test, trees with rubber banding had roots weighing 1,740.0kg and those without rubber bands had roots weighing 1,433.3kg. Root dry weight was 522.3g in trees with rubber bands and 450.0g in those without rubber bands, but showed no significant difference depending on whether the rubber band was attached. 3. In a comparison of root number between surfaces touching and not touching the rubber band in trees with rubber banding, the surface touching the rubber band was observed to have more roots growing, the difference of which was deemed significant. 4. The shoot growth rate in the pot test was 1.1% higher in trees without rubber bands when compared with trees with rubber bands. The chlorophyll content was 0.02 higher in trees with rubber bands but the difference was not significant. 5. In the pot test, no significance was found in comparison of root number, root length, and root dry weight in trees with and without rubber bands. These test results imply that removing rubber bands as a connector does not present any significant effects on the ground growth or root development of transplanted pine trees. As it is shown that surface touching rubber bands grow more roots in trees with rubber bands, more active related research must be undertaken.

Influence of Soil Texture and Bulk Density on Root Growth Characteristics and Nutrient Influx Rate of Soybean Plant (토성(土性)과 용적밀도(容積密度)가 대두(大豆)의 뿌리 생장특성(生長特性)과 양분흡수기능(養分吸收機能)에 미치는 영향(影響))

  • Jung, Yeong-Sang;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.3
    • /
    • pp.221-227
    • /
    • 1989
  • This study was conducted to understand the influence of soil compaction on root growth and nutrient uptake characteristics of the soybean roots grown in two soils with different texture. Tap root elongation was measured on young seedling grown in cores compacted to different bulk densities of 1.2, 1.4 and $1.6/cm^3$ with different soil water retention in laboratory. The soil used were Samgag sandy loam and Baegsan loam soils. The wet and dry weight, total length, average radius and total surface area of roots were measured on soybean plants grown in 1/5000 a Wagner pots compacted to different bulk density of 1.2 and $1.4g/cm^3$. The nutrient uptake of soybean shoot was measured and evaluated with the unit surface area of roots at the 7th, 17th and 27th days after germination. The results were as follows: 1. The tap root elongation rate was faster in the loam soil with low bulk density than in the sandy loam soil with high bulk density. The elongation rates were remarkedly decreased when soil water was lower than the retention of 4 bars in loam soil and that of 1 bars in sandy loam soil. 2. Tap root elongation rate sharply decreased as increased soil strength higher than $2kgf/cm^2$ measured by ELE penetrometer showing curvillinear regression. However, it was low regardless of soil strength when soil water retention was 10 bars in sandy loam soil. 3. From the pot experiment, the total length of roots were longer in loam soil than in sandy loam soil and was longer in the soils with lower bulk density. The average radius of fine roots grown in sandy loam soil was larger than that grown in loam soil. The total surface area of roots was greater in the loam soil with low bulk density than in the sandy loam soil with high bulk density as the total length of roots. 4. The amounts of nutrient uptake by soybean shoots were greater in loam soil primarily due to more production of dry matter than in sandy loam soil. The nitrogen influx rates through the unit surface area were 597 to $753nmoles/day-cm^2$ in loam soil and 222 to $365nmoles/day\;cm^2$ in sandy loam soilshowing higher value in higher bulk density. The potasium influx rates were 99 to $175nmoles/day-cm^2$, and those of phosphate were 26 to $46nmoles/day\;cm^2$. Those of Ca and Mg were 175 to 246 and 163 to $205nmoles/day\;cm^2$. The difference in nutrient influx rates between bulk densities of these elements were lower than that of nitrogen.

  • PDF

Genotypical Variation in Nitrate Accumulation of Lettuce and Spinach (상추와 시금치의 품종별 질산태 질소 축적 차이)

  • Chung, Jong-Bae;Lee, Yong-Woo;Choi, Hee-Youl;Park, Yong;Cho, Moon-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • In addition to the variation in nitrate accumulation of vegetables due to environmental conditions, there is also a distinct genetic variation. The variation of nitrate accumulation in some cultivars of lettuce and spinach commonly cultivated in Korea was investigated. Ten cultivars for both lettuce and spinach were grown in plastic containers filled with a 1:1 mixture of perlite and vermiculite with application of Hoagland No. 2 nutrient solution of high nitrate content (17.3 mM N) in a greenhouse condition. Plants were harvested four weeks after transplanting four-leaf stage seedlings. Plant growth was measured by fresh and dry matter of shoot, and contents of nitrate and other inorganic ions and organic solutes including sugar, amino acids and organic acids were measured. Large and significant genotypical variations in the nitrate content of the plants were found for both lettuce and spinach, and high negative correlations between nitrate content and fresh or dry weight were found in lettuce and spinach. Variation in nitrate accumulation of lettuce and spinach cultivars was not directly related to the differences in contents of organic and inorganic solutes, and this result indicates that photosynthesis and osmotic regulation are not directly related with the nitrate accumulation. Considering the correlations between nitrate content and plant growth of this study, it can be simply suggested that different cultivars of lettuce and spinach have their own inherited growth and physiological characteristics and also optimum nitrogen level required for the growth. Therefore when available nitrogen in root media is higher than the optimum level required for the inherited growth potential, some of the excess nitrate supplied can be accumulated in plants.

Growth Characteristics of Cucumber Scion and Pumpkin Rootstock under Different Levels of Light Intensity and Plug Cell Size under an Artificial Lighting Condition (인공광형 폐쇄형 육묘시스템 내 광량 및 플러그 트레이 규격에 따른 오이 접수 및 호박대목의 생육특성)

  • Jang, Yoonah;Lee, Hye Jin;Choi, Chang Sun;Um, Yeongcheol;Lee, Sang Gyu
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.383-390
    • /
    • 2014
  • This study was conducted to investigate the growth characteristics of cucumber scion and pumpkin rootstock under different levels of light intensity (photosynthetic photon flux, PPF) and plug cell size in a closed transplant production system with artificial lighting. Cucumber scion and pumpkin rootstock seedlings were grown under the combinations of three levels of PPF (PPF 165, 248, and $313{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and five types of plug tray (50, 72, 105, 128, and 200 cells in the tray) for nine days. The shoot dry weight and relative growth rate increased with increasing PPF and plug cell size. As PPF increased, cucumber scion and pumpkin rootstock seedlings had higher dry matter, lower specific leaf area, and lower hypocotyl length. The first true leaf of cucumber scion and pumpkin rootstock unfolded at eight and seven days after sowing, respectively, except the treatment using 200-cell plug tray. The unfolding of first true leaf of seedlings grown in 200-cell plug tray was delayed by one day. Accordingly, it was considered that the use of small cell size such as 200-cell plug tray would require more time for the production of scion and rootstock. Based on the results, we suggest that cucumber scion and pumpkin rootstock be grown in 105-cell to 128-cell plug tray for eight days and 72-cell to 105-cell plug tray for seven days, respectively, when using splice grafting method with root-removed rootstock. Additionally, higher PPF is suggested to improve the growth and quality of scion and rootstock.

Leaf Mineral Contents and Growth Characteristics of Strawberry Grown in Aquaponic System with Different Growing Media in a Plant Factory (식물공장형 아쿠아포닉스 시스템에서 배지 종류에 따른 딸기 잎의 무기이온 함량과 생육 특성)

  • Su-Hyun Choi;Min-Kyung Kim;Young-Ae Jeong;Seo-A Yoon;Eun-Young Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.122-131
    • /
    • 2023
  • This study was aimed to determine the effects of grow media on the mineral contents of the leaves and growth characteristics of strawberry grown under aquaponics system in a plant factory. For aquaculture, 12 fish (Cyprinus carpio) (total weight, 2.0 kg) were raised in an aquaponics tank (W 0.7 m × L 1.5 m × H 0.45 m, 472.5 L) filled with 367.5 L of water at a density of 5.44 kg·m-3 and total 34 of strawberry seedlings were transplanted in the pots filed with 200 g of orchid stone, hydroball or polyurethane sponge in the growing bed (W 0.7 m × L 1.5 m × H 0.22 m) laid out with holly acrylic sheet (140×60 mm, Ø80) on the top of the system. The pH and EC of the aquaponic solution was ranged from 7.6 to 4.9 and 0.24-0.91 dS·m-1, respectively. The concentration of NO3-N was about 28% lower than that of the hydroponic standard solution, and K, Fe and B were 10, 27 and 3.8 times lower, respectively; however, the mineral contents of strawberry leaves were in the appropriate ranges with lower contents in the leaves grown with sponge media. The organic content (OM), nitrogen (N), phosphorus (P), and potassium (K) of the sludge were 61.5, 5.72, 8.92, and 0.24%, respectively. The leaf area, leaf number, and dry and fresh weights of shoot at 81 DAT were significantly higher in the hydroball, and the average number of fruits per plant was significantly higher in both the orchid stone and hydroball. There was no significant difference in the fresh and dry weights of fruits. Integrated all the results suggest that the orchid stone and hydroball media are more effective to utilize nutrients in solid particles of aquaponic solution, compared to the polyurethane sponge.

Effect of Light Intensity on the Growth Responses of Three Woody Plants for Indoor Landscaping (실내녹화용 목본식물 3종의 초기 생육반응에 미치는 광량의 영향)

  • Kwon, Kei-Jung;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • The purpose of this study was to investigate the effects of light intensity on the initial growth response of three woody plants for indoor landscaping; Ardisia pusilla, Clusia rosea and Fatsia japonica. The plants were planted in 10cm pots, the light intensities used were of four levels-15, 30, 60, $120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD-and light irradiation time was set to 12/12 (day/night). Growth responses including plant height, leaf length, leaf width, chlorophyll fluorescence (Fv/Fm), SPAD and Hunter values were measured at 4-week intervals, and shoot weight and root weight of fresh and dry plants were measured after completion of the experiment. Fatsia japonica tended to show greater leaf length and leaf width as light intensity became greater, while other plants did not show any significant differences at different light intensities. The Fv/Fm value of the Ardisia pusilla was found to be stressed at 60 and $120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, while the Fv/Fm values were within normal range with other plants or at other light intensity levels to show no stress. Only Clusia rosea showed significantly different SPAD values at $120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and there was no significant SPAD value difference found with other plants or at other light intensity levels. While Hunter values of the Ardisia pusilla did not show any significant differences at any light intensity levels, Clusia rosea and Fatsia japonica showed specificity in L, a and b values at 60 and $120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. Ardisia pusilla showed a big stem growth at $120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and Clusia rosea showed a steady growth at 60 and $120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$.

Effect of Different Soil Water Potentials on Growth Properties of Northern-Highbush Blueberry (토양수분포텐셜이 북부형 하이부쉬 블루베리의 생육에 미치는 영향)

  • Kim, Hong-Lim;Kwack, Yong-Bum;Kim, Hyoung-Deug;Kim, Jin-Gook;Choi, Young-Hah
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.161-167
    • /
    • 2011
  • The soil moisture has an important effect on growth and development of highbush blueberry (HB), mainly because the root system, devoid of root hairs, is superficial. Moreover, the texture and organic matter content of Korean soil is different from the main producing counties, such as USA and Canada. To facilitate the growth and development of HB and long-term maintenance of productivity, the research related to soil moisture condition in Korea should be the priority. This study was performed to investigate the growth properties of the HB in various soil moisture conditions in order to determine the irrigation trigger point and optimum soil water potential. The texture of soil used in this experiment was loam. For the experiments, the soil was mixed with peatmoss at a rates 30% (v/v). Irrigation was scheduled at -3, -4, -5, -8, -15 and -22 kPa soil water potential then investigated leaf macronutrient, bush growth, and fruit properties. The leaf K content of HB showed the same trend in the soil water potential, but Leaf P and Mg content was highest in -5 and -22 kPa, respectively. The productivity and growth amount of HB showed the peak at the range of -4~-8 kPa as normal distribution pattern, and greatly decreased at above -15 kPa. Total dry weight and Cane diameter were highest at -4 kPa, plant width, fruit weight and yield were highest at -5 kPa, and plant height, cane number and shoot tension were highest at -8 kPa. Soluble solids content showed same trend in the soil water potential, but titratable acidity, anthocyanins and total polyphenols were not significantly different. Therefore, the optimal soil water potential for the development and a maximum production of HB were a range of -4~-8 kPa, and the recommended ideal irrigation trigger point was within -15 kPa.

Increased Growth by LED and Accumulation of Functional Materials by Florescence Lamps in a Hydroponics Culture System for Angelica gigas (당귀의 수경재배에서 LED 광원에 의한 생장 증가와 형광등에 의한 기능성물질 축적)

  • Lee, Gong-In;Kim, Hong-Ju;Kim, Sung-Jin;Lee, Jong-Won;Park, Jong-Seok
    • Journal of Bio-Environment Control
    • /
    • v.25 no.1
    • /
    • pp.42-48
    • /
    • 2016
  • Angelica gigas, belonging family Apiaceae, is a perennial and famous medical plant growing in Korea, Japan, and China. The aims of this study was to analyze the growth and accumulated Decursin and its precursor Decursinol angelate of A.gigas grown under fluorescent lamp and LED. A. gigas 'Manchu' were sowed and managed for seedlings stage in a glass house for 4 weeks. One hundred twenty seedlings with 3 true leafs were transplanted at an ebb & flow system with fluorescent lamp and LED [red: peak wavelength 660nm, blue: peak wavelength 455 nm, white = 3:2:4 ratio] irradiated at $180{\pm}7{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at the top of plant canopy for 5 weeks. The number of leaves increased by 13.5% in the LED treatment, though it is not statistically significant. Leaf length/width ratio of A. gigas grown under the fluorescent lamps was 24% bigger than the LED treatment and also the stem was 13% larger. Maximum root length was similar to both groups. Fresh weight and dry weight of shoots grown under the LED increased by 50% and 42% and the both weights of roots increased by 125% and 45%, respectively. The contents of Decursin and Decursinol angelate grown under the florescent lamps were larger than LED by 188% and 27% in shoot and 78% and 8% in root. The contents of Decursin and Decursinol angelate per plant grown under LED and florescent lamps were 132mg and 122mg. In conclusion, functional materials in A. gigas were increased by florescent light and its growth was promoted by LEDs light.

Response of Growth and Functional Components in Baby Vegetable as Affected by LEDs Source and Luminous Intensity (LEDs 광조성 및 광도가 베이비채소의 생육 및 기능성물질에 미치는 영향)

  • Yoon, Seong-Tak;Jeong, In-Ho;Kim, Young-Jung;Han, Tae-Kyu;Yu, Je-Bin;Jae, Eun-Kyung
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.3
    • /
    • pp.549-565
    • /
    • 2015
  • This study was conducted to investigate the growth characteristics and functional materials of baby vegetables as affected by different LEDs and luminous intensity at Anseongsi, Gyeonggi Province, in 2014. Test crops were beet, chicory, spinach, red leaf lettuce, crown daisy and red mustard purchased from the seed company of Dongbu Hannong and Jinheung. Growth characteristics were measured and the content of functional materials was analyzed 40 days after seeding at plug plate. Treatment of Red+Blue (4:1) at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity showed the highest number of leaves in five baby vegetables of beet, chicory, red leaf lettuce, crown daisy and red mustard. The highest shoot length of chicory, spinach, red leaf lettuce, crown daisy and red mustard was obtained from the treatment of Red+Blue (4:1) at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity. Fresh weight and dry weight of all six baby vegetables were the highest in treatment of Red+Blue (4:1) at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity. Content of chlorophyll a and chlorophyll b of spinach, red leaf lettuce and red mustard showed the highest in Fluorescent lamp at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity whereas other crops did not show definite trend under different LEDs lights and luminous intensity. The highest total content of anthocyanins and polyphenol were obtained from the treatment of Red+Blue (4:1) at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity in all six baby vegetables. Free radical scavenging activity was highest in all six vegetable crops at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity, but it was not different significantly between LEDs. As a result, the growth and the content of functional material of baby vegetables are generally to be increased in Red+Blue (4:1) at $150{\mu}mol\;m^{-2}s^{-1}$ luminous intensity. Mixed light of Red+Blue is thought to give good effect on the growth and the content of functional material in baby vegetable crops. Because there are many differences in regard of LED lights, crop varieties, cultivation and experimental methods in their impact on the growth and functional materials of baby vegetables among researchers, it is considered that a more precise studies are needed for the crop responses to LED light and luminous intensity.