DOI QR코드

DOI QR Code

Leaf Mineral Contents and Growth Characteristics of Strawberry Grown in Aquaponic System with Different Growing Media in a Plant Factory

식물공장형 아쿠아포닉스 시스템에서 배지 종류에 따른 딸기 잎의 무기이온 함량과 생육 특성

  • Su-Hyun Choi (Department of Agriculture and Life Science, Korea National Open University) ;
  • Min-Kyung Kim (Department of Agriculture and Life Science, Korea National Open University) ;
  • Young-Ae Jeong (Department of Agriculture and Life Science, Korea National Open University) ;
  • Seo-A Yoon (Department of Agriculture and Life Science, Korea National Open University) ;
  • Eun-Young Choi (Department of Agriculture and Life Science, Korea National Open University)
  • 최수현 (한국방송통신대학교 대학원 농업생명과학과) ;
  • 김민경 (한국방송통신대학교 대학원 농업생명과학과) ;
  • 정영애 (한국방송통신대학교 대학원 농업생명과학과) ;
  • 윤서아 (한국방송통신대학교 대학원 농업생명과학과) ;
  • 최은영 (한국방송통신대학교 대학원 농업생명과학과)
  • Received : 2023.01.24
  • Accepted : 2023.04.17
  • Published : 2023.04.30

Abstract

This study was aimed to determine the effects of grow media on the mineral contents of the leaves and growth characteristics of strawberry grown under aquaponics system in a plant factory. For aquaculture, 12 fish (Cyprinus carpio) (total weight, 2.0 kg) were raised in an aquaponics tank (W 0.7 m × L 1.5 m × H 0.45 m, 472.5 L) filled with 367.5 L of water at a density of 5.44 kg·m-3 and total 34 of strawberry seedlings were transplanted in the pots filed with 200 g of orchid stone, hydroball or polyurethane sponge in the growing bed (W 0.7 m × L 1.5 m × H 0.22 m) laid out with holly acrylic sheet (140×60 mm, Ø80) on the top of the system. The pH and EC of the aquaponic solution was ranged from 7.6 to 4.9 and 0.24-0.91 dS·m-1, respectively. The concentration of NO3-N was about 28% lower than that of the hydroponic standard solution, and K, Fe and B were 10, 27 and 3.8 times lower, respectively; however, the mineral contents of strawberry leaves were in the appropriate ranges with lower contents in the leaves grown with sponge media. The organic content (OM), nitrogen (N), phosphorus (P), and potassium (K) of the sludge were 61.5, 5.72, 8.92, and 0.24%, respectively. The leaf area, leaf number, and dry and fresh weights of shoot at 81 DAT were significantly higher in the hydroball, and the average number of fruits per plant was significantly higher in both the orchid stone and hydroball. There was no significant difference in the fresh and dry weights of fruits. Integrated all the results suggest that the orchid stone and hydroball media are more effective to utilize nutrients in solid particles of aquaponic solution, compared to the polyurethane sponge.

본 연구는 식물공장형 아쿠아포닉스 시스템에서 배지 종류에 따른 딸기 잎의 무기이온 함량과 생육 특성을 관찰하고자 수행되었다. 양어는 비단잉어(Cyprinus carpio) 12마리(총어체중, 2.0kg)를 수조(W 0.7m × L 1.5m × H 0.45m, 472.5L)에 367.5L 물을 채운 후 입식하였고 5.44kg·m-3 밀도로 사육하고 딸기 모종 34개체는 시스템 상단의 재배 베드(W 0.7m × L 1.5m × H 0.22m)에 구멍을 낸 아크릴판(140×60mm, Ø80)을 설치하고 난석, 하이드로볼 그리고 폴리우레탄 스폰지를 채운 네트포트에 정식하였다. 재배기간 동안 수조액의 pH는 4.9-7.6, EC는 0.24-0.91dS·m-1 범위를 보였다. 수조액의 NO3-N은 수경재배 표준 배양액보다 약28% 낮고 K, Fe, B은 각각10배, 27배, 3.8배 낮았으나 딸기 잎의 무기이온 함량은 적정 수준을 보였으며 스펀지 처리구에서 난석과 하이드로볼 처리구보다 낮았다. 수조액 슬러지의 유기물 함량(OM), 질소(N), 인(P), 칼륨(K)의 함량이 각각61.5, 5.72, 8.92, 0.24%였다. 정식 후 81DAT에 측정된 엽면적, 엽수, 지상부 생체중과 건물중은 하이드로볼 처리에서 유의적으로 높았고, 개체당평균 과실수는 난석과 하이드로볼에서 스펀지보다 유의적으로 많았지만 과실 생체중과 건물중은 처리별 유의차가 없었다. 본 연구의 결과를 종합해보면, 아쿠아포닉 시스템에서 난석이나 하이드로볼 배지는 폴리우레탄 스펀지보다 수조액의 슬러지 비료성분을 가용화하는 데 효율적인 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 한국방송통신대학교 교내 연구비(2022년도) 지원을 받아 수행되었음.

References

  1. Blanchard C., D.E. Wells, J.M. Pickens, and D.M. Blersch 2020, Effect of pH on cucumber growth and nutrient availability in a decoupled aquaponic system with minimal solids removal. Horticulturae 6:10. doi:10.3390/horticulturae6010010
  2. Campbell C.R. 2000, Reference sufficiency ranges for plant analysis in the southern region of the United States. South Coop Ser Bull 394:111.
  3. Filep R.M., D. Stefan, M. Costache, M.S. Bedivan, L. Badulescu, and C.G. Nicolaea 2016, Pilot aquaponic growing system of carp (Cyprinus carpio) and basil (Ocimum basilicum). Agric Agric Sci Proced 10:255-260. doi:10.1016/j.aaspro.2016.09.062
  4. Francis C., G. Lieblein, S. Gliessman, T.A. Breland, N. Creamer, R. Harwood, L. Salomonsson, J. Helenius, D. Rickerl, R. Sal vador, M. Wiedenhoeft, S. Simmons, P. Allen, M. Altieri, C. Flora, and R. Poincelot 2003, Agroecology: The ecology of food systems. J Sustain Agric 22:99-118. doi:10.1300/J064v22n03_10
  5. Goddek S., B. Delaide, U. Mankasingh, K.V. Ragnarsdottir, H. Jijakli, and R. Thorarinsdottir 2015, Challenges of sustainable and commercial aquaponics. Sustainability 7:4199-4224. doi:10.3390/su7044199
  6. Hochheimer J.N., and F.W. Wheton 1998, Biological filters: Trickling and RBC design. In GS Libey, MB Timmons, eds, Proceedings of the Second International Conference on Recirculating Aquaculture. Virginia Polytechnic Institute and State University, Roanoke, Virginia, USA, pp 291-318.
  7. Hoffmann W.A., and H. Poorter 2002, Avoiding bias in calculations of relative growth rate. Ann Bot 90:37-42. doi:10.1093/aob/mcf140
  8. Inoue S.I., K. Takahashi, H. Okumura-Noda, and T. Kinoshita 2016, Auxin influx carrier AUX1 confers acid resistance for Arabidopsis root elongation through the regulation of plasma membrane H+-ATPase. Plant Cell Physiol 57:2194-2201. doi:10.1093/pcp/pcw136
  9. Jun H.J., J.G. Hwang, M.J. Son, and D.J. Choi 2008, Effect of root zone temperature on root and shoot growth of strawberry. J Bio-Env Con 17:14-19. (in
  10. Kim S.K., R.N. Bae, H.S. Hwang, M.J. Kim, H.R. Sung, and C.H. Chun 2010, Comparison of bioactive compounds contents in different fruit tissues of June-bearing strawberry cultivars. Korean J Hortic Sci Technol 28:948-953.
  11. Kim Y.O., and S.M. Lee 2015, Influence of spirulina level in diet on skin color of red- and white-colored fancy carp cyprinus carpio var. koi. JFMSE 27:414-421. (in Korean) doi:10.13000/JFMSE.2015.27.2.414
  12. Ko H.J., and K.Y. Kim 2016, Heavy metals contents and chemical characteristics in compost from animal manures. J Korean Soc Occup Environ Hyg 26:170-177. (in Korean) doi:10.15269/JKSOEH.2016.26.2.170
  13. Lee D.H. 2022, Comparative study on growth of leafy vegetables and fancy carp (Cyprinus carpio var. koi), grown in coupled aquaponics (CAS) and decoupled aquaponics (DAS). JFMSE 34:750-764. (in Korean) doi:10.13000/JFMSE.2022.10.34.5.750
  14. Lee H.C., N.J. Kang, I.R. Rho, H.J. Jung, J.K. Kwon, K.H. Kang, J.H. Lee, and S.C. Lee 2006, Hydroponic culture possibility and optimal solution strength of 'Pechika' everbearing strawberry on highland in summer. J Bio-Env Con 15:250-256. (in Korean)
  15. Lee H.J., K.Y. Choi, and E.Y. Choi 2020, Determination of mineral nutrient concentrations in fish growing water and lettuce leaf for hydroball aquaponics. Protected Hort Plant Fac 29:293-305. (in Korean) doi:10.12791/KSBEC.2020.29.3.293
  16. Lee H.J., K.Y. Choi, M.H. Chiang, and E.Y. Choi 2022, Photosynthesis, growth and yield characteristics of Peucedanum japonicum T. grown under aquaponics in a plant factory. J Bio-Env Con 31:67-76. (in Korean) doi:10.12791/KSBEC.2022.31.1.067
  17. Lee J.N., H.J. Kim, K.D. Kim, D.L. Yoo, and J.T. Suh 2012, Characteristics of new ever-bearing strawberry 'Gwanha' cultivar for ornamental horticulture. Korean J Hortic Sci Technol 30:784-787. (in Korean) doi:10.7235/hort.2012.12119
  18. Lee S.W., G.C. Hwang, J.G. Yun, J.K. Hong, and S.J. Park 2014, Effect of various fruit-loads on yield, fruit quality and growth of 'Seolhyang' strawberry. Protected Hort Plant Fac 23:205-211. (in Korean) doi:10.12791/KSBEC.2014.23.3.205
  19. Lee Y.B., K.W. Park, S.T. Park, J.H. Bae, H.J. You, H.Y. Jo, K.Y. Choi, and Y.Y. Choi 2015, Practical hydroponics. In YB Lee, ed, Practical hydroponics: Nutrient composition for leaf vegetable, Ed 1. Jinsol, Korea, p 87.
  20. Lennard W.A., and B.V. Leonard 2006, A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an aquaponic test system. Aquac Int 14:539-550. doi:10.1007/s10499-006-9053-2
  21. Love D.C., J.P. Fry, L. Genello, E.S. Hill, J.A. Frederick, X. Li, and K. Semmens 2014, An international survey of aquaponics practitioners. PLoS ONE 9:e102662. doi:10.1371/journal.pone.0102662
  22. Monsees H., J. Keitel, M. Paul, W. Kloas, and S. Wuertz 2017, Potential of aquacultural sludge treatment for aquaponics: Evaluation of nutrient mobilization under aerobic and anaerobic conditions. Aquac Environ Interact 9:9-18. doi:10.3354/aei00205
  23. Pineda-Pineda J., I. Miranda-Velazquez, J.E. Rodriguez-Perez, J.A. Ramirez-Arias, E.A. Perez-Gomez, I.N. Garcia-Antonio, and J.J. Morales-Parada 2017, Nutrimental balance in aquaponic lettuce production. Acta Hortic 1170:1093-1100. doi:10.17660/ActaHortic.2017.1170.141
  24. Rakocy J.E., M.P. Masser, and T.M. Losordo 2006, Recirculating aquaculture tank production systems: aquaponics-integrating fish and plant culture. SRAC publication 454.
  25. Rural Development Administration (RDA) 2019, Agricultural technology guide 40 (strawberry). Accessed 12 January 2023.
  26. Rural Development Administration (RDA) 2022, Enforcement Decree of the Ministry of Agriculture, Fisheries and FoodFertilizer process specification setting. Accessed 12 January 2023.
  27. Schreier H.J., N. Mirzoyan, and K. Saito 2010, Microbial diversity of biological filters in recirculating aquaculture systems. Curr Opin Biotech 21:318-325. doi:10.1016/j.copbio.2010.03.011
  28. Shukla J., V.P. Mohandas, and A. Kumar 2008, Effect of pH on the solubility of CaSO4 2H2O in aqueous NaCl solutions and physicochemical solution properties at 35℃. J Chem Eng Data 53:2797-2800. https://doi.org/10.1021/je800465f
  29. Somerville C., M. Cohen, E. Pantanella, A. Stankus, and A. Lovatelli 2014, Small-scale aquaponic food production: Integrated fish and plant farming. FAO Fisheries and Aquaculture Technical Paper 589. Food and Agriculture Organization of the United Nations, Rome, Italy.
  30. Thorarinsdottir R. 2015. Aquaponics guidelines. Haskolaprent, Reykjavik, Iceland, p 40.
  31. Tyson R.V., E.H. Simonne, D.D. Treadwell, M. Davis, and J.M. White 2008, Effect of water pH on yield and nutritional status of greenhouse cucumber grown in recirculating hydroponics. J Plant Nutr 31:2018-2030. doi:10.1080/01904160802405412
  32. Wong-Chong G.M., and R.C. Loehr 1975, The kinetics of microbial nitrification. Water Res 9:1099-1106. doi:10.1016/0043-1354(75)90108-6
  33. Yang T., and H.J. Kim 2020, Comparisons of nitrogen and phosphorus mass balance for tomato, basil, and lettuce-based aquaponic and hydroponic systems. J Cleaner Prod 274:122619. doi:10.1016/j.jclepro.2020.122619
  34. Zou Y.N., Z. Hu, J. Zhang, H.J. Xie, C. Guimbaud, and Y.K. Fang 2016, Effects of pH on nitrogen transformations in media-based aquaponics. Bioresour Techol 210:81-87. doi:10.1016/j.biortech.2015.12.079