• Title/Summary/Keyword: ship tracking

Search Result 182, Processing Time 0.024 seconds

Buzz Margin Control for Supersonic Intake Operating over Wide Range of Mach Number (넓은 마하수 영역에서의 초음속 흡입구 버즈마진 제어기법)

  • Park, Iksoo;Park, Jungwoo;Lee, Changhyuck;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.27-34
    • /
    • 2014
  • Buzz margin scheduling and control technique which are suitable to regulate stable and high pressure air in wide range of Mach number are suggested for fixed geometry of a supersonic intake. From the analysis of preceding study, most effective control variable is induced and scheduling law is newly suggested in a real application point of view. The appropriateness of the control law in wide range of Mach number is addressed by numerical simulation of controlled propulsion system. Also, the simulation for stabilization and tracking performances of the controller are studied to investigate the phenomena under flight maneuver and disturbances.

Recent Development in Technologies for Short Sea Shipping and its Implications (근해운송시스템의 기술 분야별 개발 현황 및 시사점)

  • Seo, Dae-Won;Ko, Jung-O;Lee, Seung-Hee
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.883-888
    • /
    • 2012
  • Recently, the logistics industry in Asia is growing rapidly mostly with Chinese economic development. A variety of studies have been carried out to reduce the logistic cost under the situation that the global freight traffic continues to increasing. The Short Sea Shipping(SSS) system, a multi modal transport system centered around coastal shipping to realize high value-added logistics, achieved considerable success in EU. To implement the SSS system in Korea, it is necessary to develop the various essential technologies related to development of efficient ships and port facilities, including equipment for loading and unloading containers, operating and managing systems for freight terminals and technologies for tracking and securing containers. The present paper focuses on the survey of the current essential technologies available for implementation of the SSS system and suggests the direction of future development in the technologies.

A Study on Knowledge Based-AR System for Pipe Maintenance Support in Offshore Structure (해양구조물에서의 파이프정비 지원을 위한 지식기반형 증강현실 시스템에 관한 연구)

  • Kim, Chung-Hyun;Lee, Kyung-Ho;Lee, Jung-Min;Kim, Dea-Seok;Han, Eun-Jung
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.178-184
    • /
    • 2010
  • Today, there has been a decrease in international shipping because of the weakening in global economies. Therefore, shipowners are thinking more about Floating Production Storage and Offloading (FPSO), which can perform functions related to the transporting, storage, and tracking of crude oil from oil wells. Given the huge expense of these special ships, shipowners require workers who can solve problems quickly and secure sustainable production functions in this age of globalization. Furthermore, it is important to design, construct, and maintain facilities so that a ship remains in operation over a long term. This paper discusses a system that uses knowledge-based AR to help workers improve their understanding and deal with pipeline equipment problems safely. In addition, it displays a 3CAD model and status information for products to improve their recognition on the FPSO that they intend to inspect. At the same time, the system works quickly and offers solutions for dangerous circumstances or malfunctions. It thus helps to maintain the functionality of the FPSO throughout its life-cycle.

Absolute Sonar Position on Side Scan Sonar Data Processing (Side Scan Sonar 자료처리에서 수중예인체의 절대위치)

  • Lee, Yong-Kuk;Park, Gun-Tae;Suk, Bong-Chool;Jung, Baek-Hun;Kim, Seong-Ryul
    • Journal of the Korean earth science society
    • /
    • v.24 no.5
    • /
    • pp.467-476
    • /
    • 2003
  • For the seafloor acoustic image mapping of side scan sonar, the beginning step of the procedure is to fix the absolute sonar (tow-fish) position since the sonar is not hull mounted but towed astern. The technical algorithm used to calculate the actual sonar position without any other additional sub-system, i.e., the underwater acoustic position tracking system or the sonar attitude measuring device, was proposed. In the seafloor image mosaic mapping results using the sonar track (not ship track) developed in this study, any ambiguity or inconsistency of seafloor features was not found. The incidental effect from the sonar position determination procedure orients the towing direction of sonar to be smooth, consequently the swath pattern on the across-track direction becomes stable and the blanking phenomenon of the insonification area is reduced conspicuously. This technical method is considered to be an useful tool when applied toother underwater towing vehicle surveys.

Systematic Error Correction of Sea Surveillance Radar using AtoN Information (항로표지 정보를 이용한 해상감시레이더의 시스템 오차 보정)

  • Kim, Byung-Doo;Kim, Do-Hyeung;Lee, Byung-Gil
    • Journal of Navigation and Port Research
    • /
    • v.37 no.5
    • /
    • pp.447-452
    • /
    • 2013
  • Vessel traffic system uses multiple sea surveillance radars as a primary sensor to obtain maritime traffic information like as ship's position, speed, course. The systematic errors such as the range bias and the azimuth bias of the two-dimensional radar system can significantly degrade the accuracy of the radar image and target tracking information. Therefore, the systematic errors of the radar system should be corrected precisely in order to provide the accurate target information in the vessel traffic system. In this paper, it is proposed that the method compensates the range bias and the azimuth bias using AtoN information installed at VTS coverage. The radar measurement residual error model is derived from the standard error model of two-dimensional radar measurements and the position information of AtoN, and then the linear Kalman filter is designed for estimation of the systematic errors of the radar system. The proposed method is validated via Monte-Carlo runs. Also, the convergence characteristics of the designed filter and the accuracy of the systematic error estimates according to the number of AtoN information are analyzed.

Design and Implementation of Unmanned Surface Vehicle JEROS for Jellyfish Removal (해파리 퇴치용 자율 수상 로봇의 설계 및 구현)

  • Kim, Donghoon;Shin, Jae-Uk;Kim, Hyongjin;Kim, Hanguen;Lee, Donghwa;Lee, Seung-Mok;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • Recently, the number of jellyfish has been rapidly grown because of the global warming, the increase of marine structures, pollution, and etc. The increased jellyfish is a threat to the marine ecosystem and induces a huge damage to fishery industries, seaside power plants, and beach industries. To overcome this problem, a manual jellyfish dissecting device and pump system for jellyfish removal have been developed by researchers. However, the systems need too many human operators and their benefit to cost is not so good. Thus, in this paper, the design, implementation, and experiments of autonomous jellyfish removal robot system, named JEROS, have been presented. The JEROS consists of an unmanned surface vehicle (USV), a device for jellyfish removal, an electrical control system, an autonomous navigation system, and a vision-based jellyfish detection system. The USV was designed as a twin hull-type ship, and a jellyfish removal device consists of a net for gathering jellyfish and a blades-equipped propeller for dissecting jellyfish. The autonomous navigation system starts by generating an efficient path for jellyfish removal when the location of jellyfish is received from a remote server or recognized by a vision system. The location of JEROS is estimated by IMU (Inertial Measurement Unit) and GPS, and jellyfish is eliminated while tracking the path. The performance of the vision-based jellyfish recognition, navigation, and jellyfish removal was demonstrated through field tests in the Masan and Jindong harbors in the southern coast of Korea.

2 Dimensional Flow Analysis according to the Submerged Body of Catamaran Leisure Ship (쌍동선형 레저선박의 몰수부 간격에 따른 2차원 유동해석)

  • Lee, Chang-Woo;Oh, Woo-Jun;Lee, Dong-Sup;Shan, Chang-Bae;Lee, Gyung-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.241-242
    • /
    • 2009
  • There are marry ships and marine structures and also has marry differences on according to the shape and the interval of hulls to the purpose. the multi-submerged body needs appropriate distance between the hulls because of the optimum hull form. thus, through this paper, the flow characteristics behind the multi-submerged body according os the distance ration between the hulls and various angles of attack was conducted.

  • PDF

Analysis of Marine Accident based on Impact of Tidal Stream and Vessel Tracking in VTS Are (VTS 관제 구역 내 조류의 영향과 항적 이동에 따른 해양 사고 분석 방법)

  • Kim, Joo-Sung;Jeong, Jung-Sik;Kang, Seung-Ho;Lim, Se-Wook
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.246-247
    • /
    • 2018
  • Since the routes within VTS areas include harbour limit of major ports, there are sections where the traffic volume increases and the routes are normally narrow according to the geographical conditions. In the case of ports and VTS areas located on the west coast of Korea, it is affected by strong current due to large tidal differences. In this paper, we propose a method to produce useful information according to the change of navigation environment by analyzing the characteristics of ship's movement according to tidal stream or current. The SVR seaway model, support vector regression, and grid search were conducted in order to extract models.

  • PDF

A Study on the Jamming Simulator Design for the Test & Evaluation of Broadband Radar's Electronic Protection Techniques (광대역 레이더의 전자보호기법 시험평가를 위한 재밍시뮬레이터 설계 연구)

  • Lee, Sung-Ho;Jung, Hoi-In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6A
    • /
    • pp.611-621
    • /
    • 2010
  • When an enemy platforms transmit electronic jamming or tracking interference signal to a friendly ship's radar, the radar have to avoid the jamming and to track targets continually without losing the targets with the electronic protection techniques. Electronic protection is an essential key for a platform to survive in electronic warfare, for this purpose, jamming simulator was developed to provide electronic warfare environments for the test and evaluate the effectiveness of radar's electronic protection techniques. Jamming simulator has ability to generate a variety of deception and noise jamming signals using the DRFM which minimize phase distortions of 1GHz broadband radar signal with the phase sampling method. This paper presents the design contents of the jamming simulator to process the analysis of broadband radar signal and generate jamming signal, also proposes the algorithms of the deception and noise jamming and verifies the effectiveness of the simulator by field trial.

Analysis of the behavior of gray rockfish (Sebastes schlegelii Hilgendorf) on the construction of wind power generators in the sea area around Byeonsan Peninsula, Korea (변산반도 주변해역에서 풍력발전기 건설공사에 대한 조피볼락(Sebastes schlegelii Hilgendorf )의 행동분석)

  • HEO, Gyeom;HWANG, Doo-Jin;MIN, Eun-Bi;OH, Sung-Yong;PARK, Jin Woo;SHIN, Hyeon-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.2
    • /
    • pp.129-137
    • /
    • 2019
  • This study was conducted to investigate the effects of underwater noise caused by pile driving during marine construction on fish. In this study, the three gray rockfish were released about 1 km away from the construction site of wind power generation on July 18, 2018 and traced using two acoustic telemetry techniques. The behavior of the fish was analyzed by calculating the moving distance, swimming speed and direction of the gray rockfish. In the results of the acoustic tracking using the ship, the rockfish moved about 2.11 km for about two hours at a speed of $0.28{\pm}0.14m/s$ (0.94 TL/s). The bottom depth of the trajectory of the rockfish was $1.0{\pm}0.6m$ on average. There was a significant directionality in swimming direction of the gray rockfish, and there was no significant correlation between the swimming direction and tidal current direction. Moving distance during 5 minutes (5MD) during pile driving and finishing operations between rock surface and bedrock were 0.94-0.96 times (76.0-77.0 m) and 1.81-2.73 times (146.0-219.5 m), respectively, compared with no pile driving. This study is expected to be used as a basic data of fish behavior research on underwater noise.