• Title/Summary/Keyword: shifting control

Search Result 246, Processing Time 0.03 seconds

Development of Hardware-in-the-Loop Simulator for Testing Embedded System of Automatic Transmission (자동변속기용 임베디드 시스템 성능 시험을 위한 Hardware-in-the Loop 시뮬레이터 구축)

  • Jang, In-Gyu;Seo, In-Keun;Jeon, Jae-Wook;Hwang, Sung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.301-306
    • /
    • 2008
  • Drivers are becoming more fatigued and uncomfortable with increase in traffic density, and this condition can lead to slower reaction time. Consequently, they may face the danger of traffic accidents due to their inability to cope with frequent gear shifting. To reduce this risk, some drivers prefer automatic transmission (AT) over manual transmission (MT). The AT offers more superior drivability and less shifting shock than the MT; therefore, the AT market share has been increasing. The AT is controlled by an electronic control unit (ECU), which provides better shifting performance. The transmission control unit (TCU) is a higher-value-added product, so the companies that have advanced technologies end to evade technology transfer. With more cars gradually using the ECU, the TCU is expected to be faster and more efficient for organic communication and arithmetic processing between the control systems than the l6-bit controller. In this paper, the model of an automatic transmission vehicle using MATLAB/Simulink is developed for the Hardware in-the-Loop (HIL) simulation with a 32-bit embedded system, and also the AT control logic for shifting is developed by using MATLAB/Simulink. The developed AT control logic, transformed automatically by real time workshop toolbox, is loaded to a 32-bit embedded system platform based on Freescale's MPC565. With both vehicle model and 32-bit embedded system platform, we make the HIL simulation system and HIL simulation of AT based on real time operating system (RTOS) is performed. According to the simulation results, the developed HIL simulator will be used for the performance test of embedded system for AT with low cost and effort.

Performance Evaluation of Vehicle Gear-shifting Supportive Device Utilizing MR Haptic Cue (MR 햅틱 큐를 이용한 차량 기어변속 보조장치의 성능평가)

  • Han, Young-Min;Min, Chul-Gi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.160-166
    • /
    • 2013
  • This paper proposes a driver supportive device with haptic cue function which can be applicable for vehicles adopting manual transmission system to transmit gear-shifting information to a driver by kinesthetic forces. This haptic cue function is implemented on accelerator pedal by utilizing magnetorheological(MR) fluid and clutch mechanism. In order to achieve this goal, an MR clutch mechanism is devised to be capable of rotary motion of accelerator pedal. The proposed MR clutch is then optimally designed and manufactured under consideration of spatial limitation of vehicles. After transmission torque is experimentally evaluated according to field intensity. The manufactured MR clutch is integrated with accelerator pedal and electric motor to establish the haptic cue device. Control performances are experimentally evaluated via a simple feed-forward control algorithm.

Characteristics of transmission control of an AMT vehicle (AMT 차량의 변속제어 특성에 관한 연구)

  • Kong Jin-Young;Song Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.86-93
    • /
    • 2006
  • This study is concerned with the investigation of characteristics of an AMT (Automated Manual Transmission) which are composed of clutch part and transmission part. When a shilling signal is received from the controller, the clutch is disengaged first, and shifting action including selecting action is followed, and then the clutch is engaged last. The characteristics of transmission shifting response are affected by various parameters of clutch and transmission control elements. Analytical results are in fair agreement with experimental results. It is found that the operating pressure level is the most important for the response of AMT characteristics, and that the other parameters such as natural frequency and damping ratio of the control valve are less important.

Experimental Analysis of Clutch-Fill Parameters for Automatic Transmission (자동변속기 클러치 충전제어 파라미터의 실험적 특성분석)

  • Jung, G.H.;Park, D.H.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.47-54
    • /
    • 2014
  • Clutches are an integral part of the automatic transmission for changing gears. Modern automatic transmissions make extensive use of wet multiple-disc clutches employing hydraulic actuation mechanism with electronic control. Although nowadays, highly advanced shifting algorithm implements the superior shift quality and transmission efficiency, its performance should be based on smooth, reliable engagement with a reasonably durable friction material as well as stable clutch piston dynamics. Particularly, clutch filling control is the crucial part of shifting process because only the open-loop control is available due to the lack of measurement. In this paper, the effect of clutch-fill control parameters on clutch piston dynamics is experimentally investigated by using clutch piston test equipment which enables the clutch piston to actuate similar to real shifting conditions. The experimental analysis results can be expected to be utilized for the calibration of proportional solenoid valve as reference current profile data in vehicle test.

Analysis of Shifting Transients with Emphasis on the Modeling of a Torque Converter (토크 컨버터의 모델링을 중심으로 한 변속과도 특성해석)

  • 임원식;박영일;이장무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.132-141
    • /
    • 1995
  • The torque converter, an important component of automatic transmissions, is a hydrodynamic device which has a great influence on transient characteristics of vehicle during shift. To predict the accurate driving performance in extremely transient state such as shifting process, a detailed analysis of the torque converter is required. In this study, one dimensional performance model of the torque converter based on the concept of mean flow path, was used to analyze the shifting transients and the exact values of equivalent parameters were determined from the experimental results by using BOX program. The dynamic modelings of the components of power transmission systems such as engines, planetary gear systems, clutches and one-way clutches, were carried out. To analyze the shifting transients of tracked vehicle, a simulation program was developed. In the modeling of power transmission systems, the stiffness of shafts was neglected and shifting control logic(TCU) was included. Using the developed simulation program, the driving conditions were simulated and the results of simulation were verified through the experiments on the dynamometer.

Effect of Weight Ball Throw Training on Weight Shifting of Lower Body, Head Speed of Club, and Driving Distance of Amateur Golfers

  • Choi, Woo-Jin;Kim, Tack-Hoon;Oh, Dong-Sik
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.3
    • /
    • pp.111-117
    • /
    • 2017
  • PURPOSE: To determine the effect of weight ball throw training as a preparatory exercise before golf practice for 8 weeks on back muscle strength, weight shifting of lower body, head speed of club, and driving distance of amateur golfers. METHODS: A total of 18 subjects were randomly assigned to the experimental group (n=9) and the control group (n=9), respectively. For the experimental group, Weight ball throw training was provided to the height of waist and shoulder similar to golf swing with the following schedule: 3 kg weight ball throw training from the first week to the 4th week; 5 kg weight ball throw training from the 5th week to the 8th week. Before and after 8 weeks of training, back muscle strength, weight shifting of lower body, head speed of club, and driving distance of subjects in the two groups were measured. RESULTS: The experimental group showed significant differences in rotational back extension torque, weight shifting of lower body, head speed of club, and driving distance during golf swing (p<.05). However, the control group only showed significant difference in driving distance during golf swing (p<.05). Back extension torque, weight shifting of lower body, and head speed of club showed significant differences between the two groups during golf swing (p<.05). CONCLUSION: Weight ball throw training can positively change rotational back muscle strength, weight shifting of lower body, head speed of club, and driving distance of amateur golfers. Therefore, it might be used as an effective warming up exercise for amateur golfers.

Effects of trunk control robot training on balance and gait abilities in persons with chronic stroke

  • Lim, Chae-gil
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.2
    • /
    • pp.105-112
    • /
    • 2020
  • Objective: To investigate the effects of training using a trunk control robot (TCR) system combined with conventional therapy (CT) on balance and gait abilities in persons with chronic stroke. Design: Two-group pretest-posttest design. Methods: Thirty-five subjects with chronic stroke were randomly assigned to either the TCR group (n=17) or the trunk extension-training (TET) group (n=18). Both groups performed CT for 30 minutes, after which the TCR group performed TCR training and the TET group performed trunk extension training for 20 minutes. Both groups performed the therapeutic interventions 3 days per week for 6 weeks. Balance ability was evaluated using the Berg Balance Scale (BBS), and the Timed Up-and-Go (TUG) test. Gait ability was measured using the 10 m Walk Test (10MWT) and the NeuroCom Smart Balance Master. Results: TCR group showed significant improvements in static balance (weight bearing) and dynamic balance (weight shifting speed, weight shifting direction, BBS, and TUG), 10MWT, gait speed, and step width (p<0.05); step length was not significant. The TET group showed a significant partial improvement of dynamic balance (weight shifting speed, weight shifting direction, BBS, and 10MWT (p<0.05), but the improvements in static balance, TUG, gait speed, and step width and step length was not significant. Additionally, significant differences in static balance, dynamic balance (weight shifting speed, weight shifting direction, BBS, and TUG), 10MWT, gait speed, and step width were detected between groups (p<0.05). Conclusions: TCR training combined with CT is effective in improving static and dynamic balance, as well as gait abilities in persons with chronic stroke.

압력제어솔레노이드밸브를 이용한 직접구동 방식의 유압회로에 의한 자동변속기의 변속품질 향상에 관한 연구

  • 김정관;한명철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.505-508
    • /
    • 1995
  • This paper suggests new hydraulic circuit to control the pressure of clutches and brakes which has several advantages than conventional hydraulic circuit in automatic transmissions. In conventional hydraulic circuit, the pressures of all friction elements are controlled by only one pressure control valve and accumlators. So, controllable range is limited and it is unable to control the friction elements independently. Therefore, we can not do the fine control of timing between apply clutch and release clutch which is needed in clutch-to clutch shifting automatic transmissions. To overcome these faults, we designed the direct-acting hydraulic circuit where one pressure control valve and pressure control solenoid valve are allocated to each friction element and control that independently. Through this structural improvement of hydraulic circuit, we can achieve elaborate aontrol to clutch pressure. Specially, We can control the timing between apply clutch and release clutch delicately which is needed in clutch-to-clutch shifting.

  • PDF

Development of Contact Point Estimation Algorithm of Dry type Clutch with Considering the friction pad wear (마찰패드의 마모를 고려한 건식 클러치의 접촉점 추종 알고리즘 개발)

  • Kim, Sung-Mo;Kim, Mo-Seong;Shin, Chang-Woo;Lim, Won-Sik;Cha, Suk-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.692-696
    • /
    • 2011
  • A clutch is a very important component when engine starts and gear shifting is needed. The clutch the most commonly used is the dry clutch. This type of clutch has pads, and they are worn after disengagement of clutch little by little. The characteristics of the clutch changes as these pads wear, so wear needs to be measured, and the clutch should be controlled for proper operation. In this study, the clutch contact point estimation algorithm has been developed. From this algorithm, clutch force map changes depending on wear, and the clutch operates properly. We also see the shifting transient of a vehicle for drivability with throttle valve position control and synchronizer movement.

Adaptive Compensation Control of Vehicle Automatic Transmissions for Smooth Shift Transients Based on Intelligent Supervisor

  • Kim, Deok-Ho;Han, Jin-O;Sin, Byeong-Gwan;Lee, Gyu-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1472-1481
    • /
    • 2001
  • In this paper, an advanced shift controller that supervises the shift transients with adaptive compensation is presented. Modern shift control systems for vehicle automatic transmission are designe d to provide smooth transients for passengers' comfort and better component durability. In the conventional methods, lots of testing and calibration works have been done to tune gains of the controller, but it does not assure optimum shift quality at all times owing to system variations often caused by uncertainties in shifting hydraulic systems and external disturbances. In the proposed control scheme, an adaptive compensation controller with intelligent supervisor is implemented to achieve improved shift quality over the system variations. The control input pattern which generates clutch pressure commands in hydraulic actuating systems, is updated through a learning process to adjust for each subsequent shift based on continuous monitoring of shifting performance and environmental changes. The proposed algorithm is implemented and evaluated on the experimental test setup. Results from the experimental studies for several operation modes show both improved performance and adaptability of the proposed shift controller to uncertain changes of the shifting environment in vehicle power transmission systems.

  • PDF