• Title/Summary/Keyword: shielding effect

Search Result 535, Processing Time 0.03 seconds

Study on the Development of an Outdoor Radiographic Test Shield Using 3D Printer Filament Materials (3D 프린터 필라멘트 재료를 이용한 야외 방사선투과검사용 차폐체 개발을 위한 연구)

  • Mun, Ik-Gi;Shin, Sang-Hwa
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.565-572
    • /
    • 2019
  • In this study, shielding analysis of material and thickness of 3D printer filaments was performed for the manufacture of custom shielding by radiation workers during outdoor radiographic test. The shielding was attached to the ICRU Slab Phantom after selecting the voxel source $^{192}Ir$ and $^{75}Se$ through simulation using MCNPX, and the distance between the source and the slab Phantom was set at 100 cm. The 12 shielding materials were divided into 5 mm units up to 200 mm from the absence of shielding materials to evaluate the energy absorbed per unit mass of each shielding material. The results showed that the shielding effect was high in the order of ABS + Tungsten, ABS + Bismuth, PLA + Copper, PLA + Iron from all sources of radiographic test. However, compared to lead, the shielding effect was somewhat lower. Based on this study in the future, further study of the atomic number and the high density filament material is necessary.

A Study on Effects of Parameters on Beads by Plasma Arc Welding for Zircaloy-4 (Zircaloy-4의 플라즈마 아크용접에서 용접변수가 비이드형상에 미치는 영향)

  • ;;;Kim, S. S.;Yang, M. S.
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.57-65
    • /
    • 1997
  • A study was undertaken to determine the influence of welding variables such as shielding and plasma gases, torch standoff, travel speed and heat input, etc. on the quality of plasma arc welds in Zircaloy-4 sheet, 2mm thick. Effect of shielding gases and their flow rates on the mechanical properties of Zircaloy-4 welds by plasma arc welding were determined in terms of tensile, bardness and bend tests. The microstructure and fracture surface of Zircaloy-4 welds were investigated by optical and scanning electron microscopies. In addition, the causes of porosity and undercut in plasma arc welds of Zircaloy-4 were also investigated. Zircaloy-4 weld bead width and depth by helium shielding gas showed a wider and deeper than those by argon. It was found that Zircaloy-4 welds with shielding gas of helium did dxhibit a little smoother and uniform weld beads than those with shielding gas of argon. It was also found that the optimum gas flow rates for Zircaloy-4 welding were 0.45l/min for plasma gas with Ar and 4.5 - 6 l/min for shielding gas with He. In addition, there was no big difference in the microstructure and fracture surface of the weld metals made by either Ar shielding gas or He shielding gas.

  • PDF

Physical Properties of Medical Radiation Shielding Sheet According to Shielding Materials Fusion and Resin Modifier Properties (차폐 재료의 융합과 개질제 특성에 따른 의료방사선 차폐 시트 물리적 특성 고찰)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.99-106
    • /
    • 2018
  • The modifier proposed in this research is for enhancing the affinity of the glass component with the high polymer resin and the molecular weight. The particle packing, tensile strength and shielding performance of the shielding sheet made of the tungsten oxide were evaluated. The best effect can be obtained when 20% of the modifier PMMA used to improve the shielding performance and maintain the affinity and strength with the sealant is mixed. The fusion of the materials presented in this study and the mass production of the shielding sheet through the modifier are possible and will contribute to the production of lightweight shielding sheets in the future.

Carbon Composite Material Using Nickel Nano-Powder Impregnation Research on Electromagnetic Shielding Effect (니켈나노파우더 함침기법을 이용한 탄소복합소재의 전자파차폐 효과에 관한 연구)

  • Seo, Kwang-Su;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.49-55
    • /
    • 2020
  • In order to improve the electromagnetic shielding rate of Carbon Fiber (CF), it was produced using the nickel nano-powder impregnating method. Using two types of nickel powder having thicknesses of 50 ㎛ and 100 ㎛, and a thermoplastic elastomer resin, a compound containing 10-20% nickel content was mixed and then manufactured through an extruder. The CF coated with the compound was woven and manufactured using a 1-ply specimen. The final nickel content of the specimen was verified using TGA and the distribution of nickel powder on the CF surface was verified using SEM. The metal shows a high shielding rate in the low-frequency band, but the shielding rate decreases at higher-frequency bands. The CF improves at the higher frequency band, and metals reflect electromagnetic waves while carbon absorbs electromagnetic waves. The study of shielding materials, which are stronger and lighter than metal, by using CF lighter than metal and enabling the shielding rate from low-frequency band to high-frequency band, confirmed that the larger the area coated with nickel nano-powder, the better the electromagnetic shielding performance. In particular, CF coated with a thickness of 100 ㎛ has a shielding rate similar to that of copper and can also be used for EV/HEV automotive cables and other applications in the future.

Shielding Capability Evaluation of Slit-shaped Structure for Scattered X-ray using Monte Carlo Method (몬테카를로 방법을 이용한 슬릿형태 구조물의 차폐능력 평가)

  • Kim, Sangrok;Heo, Jaeseung
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.733-740
    • /
    • 2020
  • As the use of radiation for medical purposes increases, the exposure dose of medical workers is also increasing. To reduce this dose, various studies on changing the shielding material have been conducted. Recently, a new method to reduce the dose at the entrance of the radiation treatment room was proposed by using the photoelectric effect that occurs when the radiation is scattered. Because this method is particularly effective for low-energy photons, in this study, a slit-type structure was proposed as a excellent shielding structure against scattered x-ray in a general photography room, and was evaluated the shielding effect by Monte Carlo simulation. As a result of the calculation, this study found that in the case of a structure in which steel plates with a thickness of 2 mm and a width of 5 cm are stacked at 2 mm intervals, a shielding effect was approximately 99.9% or more, excluding the heights of the floor and the patient where scattering occurs directly.

The Effect of Shielding N2 gas on The Pitting Corrosion of Seal-welded Super Austenitic Stainless Steel by Autogenous Welding

  • Kim, Ki Tae;Chang, Hyun Young;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.49-58
    • /
    • 2017
  • Many research efforts on the effect of nitrogen on the corrosion resistance of stainless steels have been reported, but little research has been conducted on the effect of nitrogen for the weldment of stainless steels by the seal-weld method. Therefore, this work focused on the determining the corrosion resistance of tube/tube sheet mock-up specimen for sea water condensers, and elucidating the effect of shielding nitrogen gas on its resistance. The pitting corrosion of autogenously welded specimen propagated preferentially along the dendritic structure. Regardless of the percent of shielding nitrogen gas, the analyzed nitrogen contents were very much lower than that of the bulk specimen. This can be arisen because the nitrogen in shielding gas may partly dissolve into the weldment, but simultaneously during the welding process, nitrogen in the alloy may escape into the atmosphere. However, the pitting resistance equivalent number (PREN) of the interdendrite area was higher than that of the dendrite arm, regardless of the shielding gas percent; and the PREN of the interdendrite area was higher than that of the base metal; the PREN of the dendrite arm was lower than that of the base metal because of the formation of (Cr, Mo) rich phases by welding.

Evaluation of the Usefulness of Tungsten Nanoparticles as an Alternative to Lead Shielding Materials in Electron Beam Therapy (전자선 치료시 납 차폐체 대체물질로서의 텅스텐 나노입자의 유용성 평가)

  • Kim, Ji-Hyang;Kim, Na-Kyoung;Lee, Gyu-Yeong;Jung, Da-Bin;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.949-956
    • /
    • 2021
  • The purpose of this paper is to evaluate whether tungsten nanoparticles have a shielding effect on scattered light generated at high doses as an alternative material to lead used to shield scattered light in electron beam therapy. A plate was manufactured to set the position of the dosimeter and the size of the radiation field to be constant. The glass dosimeter was placed at 12 points, which were 1, 2, and 4 cm apart from the center of the field of 10 × 10 cm2 in the cross direction. A total of 12 types of tungsten nanoparticle shields were developed with a thickness of 0.75 mm to 4.00 mm and a size of 10 × 10 cm2 using 0.4, 0.75, and 1 mm materials. Using a linear accelerator, measurements were made four times at 6 MeV and four times at 12 MeV, and the dose intensity was investigated at 100 MU. The 4 mm shielding plate showed the highest shielding effect at 1 cm from the irradiation field. The 1 mm shielding plate at 2 cm from the irradiation field had the lowest shielding effect. As the thickness of the tungsten shielding plate increased, the electron beam's shielding effect increased sharply. It was confirmed that tungsten nanoparticles can reduce the amount of scattered light generated by electron beam therapy. Therefore, this study will provide basic data when follow-up studies are conducted on the shielding ability of tungsten nanoparticles.

Verification of the Protective Effect of Functional Shielding Cream for the Prevention of X-ray Low-dose Exposure (X-ray 저선량 피폭방지를 위한 기능성 차폐크림의 방어 효과 검증)

  • Seon-Chil Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.497-506
    • /
    • 2023
  • In the case of radiation workers in medical institutions, radiation exposure is made for patient protection and accurate procedures, so they have a problem of low dose exposure. Low-dose radiation exposure occurs mainly in parts of the body other than the Apron area, and the most frequent place is the skin of the back of the hand. In particular, since the medical personnel's hands require senses and fine movements during the procedure, they are defenseless in the radiation exposure area and are at risk of exposure. It can solve the problem of shielding such as lead gloves, and it is difficult to use by suggesting the activity of the hand during the procedure. To solve this problem, a shielding cream capable of obtaining a functional radiation protection effect was developed and its shielding performance was compared with lead equivalent of 0.1 mmPb. In the process of manufacturing shielding cream, the shielding performance was improved by adding a defoaming process to reduce air holes to increase the density of the cream. Therefore, the shielding cream using barium sulfate as the main material has a lower shielding rate than the lead plate, and in the realm of effective energy, it is 59%, At high effective energy, a difference of about 37% was shown, indicating that there is a functional radiation protection effect. The advantage is that it can be used directly on the skin, and it is considered that it can be used before wearing surgical gloves and has a permanent protective effect.

Electromagnetic Interference Shielding Effect of Fiber Reinforced Composites with Stainless Fiber Conductive Filler (스테인레스 섬유를 충전제로 사용한 섬유강화 복합재료의 전자파 차폐 효과)

  • Han, Gil-Young;Song, Dong-Han;Ahn, Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.71-78
    • /
    • 2010
  • The objective of this research is to investigate the influence of material characteristic and design on to the electromagnetic interference (EMI) shielding characteristics. Basalt glass fiber reinforced composite specimens with stainless fiber conductive filler were manufactured to perform the electromagnetic interference shielding effectiveness(SE) experiments. In order to reflection and absorb the specimen in electromagnetic fields, flanged coaxial transmission line sample holder was fabricated according to ASTM D 4935-89. Electromagnetic shielding effectiveness(EMSE) was measured quantitatively to examine the electromagnetic shielding characteristics of designed specimens. The result of EMI shielding experiments showed that maximum EMSE value of sandwich type specimens with GSG(basalt glass fiber/stainless fiber/basalt glass fiber) and SGS(stainless fiber/basalt glass fiber/stainless fiber) were 65dB and 80dB at a frequency of 1,500MHz, respectively.

Assessment of Radiation Shielding Ability of Printing Materials Using 3D Printing Technology: FDM 3D Printing Technology (3D 프린팅 기술을 이용한 원료에 대한 방사선 차폐능 평가: FDM 방식의 3D 프린팅 기술을 중심으로)

  • Lee, Hongyeon;Kim, Donghyun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.909-917
    • /
    • 2018
  • 3D printing technology is expected to be an innovative technology of the manufacturing industry during the 4th industrial revolution, and it is being used in various fields including biotechnology and medical field. In this study, we verified the printing materials through Monte Carlo simulation to evaluate the radiation shielding ability of the raw material using this 3D printing technology. In this paper, the printing materials were selected from the raw materials available in a general-purpose FDM-based 3D printer. Simulation of the ICRU phantom and the shielding system was carried out to evaluate the shielding effect by evaluating the particle fluence according to the type and energy of radiation. As a result, the shielding effect tended to decrease gradually with increasing energy in the case of photon beam, and the shielding effect of TPU, PLA, PVA, Nylon and ABS gradually decreased in order of materials. In the case of the neutron beam, the neutron intensity increases at a low thickness of 5 ~ 10 mm. However, the effective shielding effect is shown above a certain thickness. The shielding effect of printing material is gradually increased in the order of Nylon, PVA, ABS, PLA and TPU Respectively.