DOI QR코드

DOI QR Code

Physical Properties of Medical Radiation Shielding Sheet According to Shielding Materials Fusion and Resin Modifier Properties

차폐 재료의 융합과 개질제 특성에 따른 의료방사선 차폐 시트 물리적 특성 고찰

  • Kim, Seon-Chil (Department of Biomedical Engineering, Keimyung University)
  • 김선칠 (계명대학교 의용공학과)
  • Received : 2018.10.08
  • Accepted : 2018.12.20
  • Published : 2018.12.28

Abstract

The modifier proposed in this research is for enhancing the affinity of the glass component with the high polymer resin and the molecular weight. The particle packing, tensile strength and shielding performance of the shielding sheet made of the tungsten oxide were evaluated. The best effect can be obtained when 20% of the modifier PMMA used to improve the shielding performance and maintain the affinity and strength with the sealant is mixed. The fusion of the materials presented in this study and the mass production of the shielding sheet through the modifier are possible and will contribute to the production of lightweight shielding sheets in the future.

의료방사선 방어를 위해 사용되는 차폐 시트의 제조과정에서 인장강도를 유지하면서 차폐 재료의 충전율을 높여 차폐 성능을 향상시키는 방안을 제시하고자 한다. 본 연구에서 제안된 개질제는 고분자 수지재료와의 융합에 있어서 분자량을 높여 재료의 친화성을 높이는 역할을 수행한다. 차폐시트의 산화텅스텐의 충전율과 인장강도, 차폐 성능 등을 평가하였다. 공정과정에서 개질제는 분자량과 밀도를 증가시켰고, 성형 과정에서 퍼짐 형상이 적용되었고, 성능 향상과 재료와의 친화성, 인장강도를 유지하기 위해 사용된 개질제 PMMA는 20%를 혼합할 경우 가장 우수한 효과를 얻을 수 있다. 본 연구에서 제시된 재료의 융합과 개질제를 통해 차폐시트의 대량생산이 가능하며, 향후 경량의 차폐복 제작에 기여할 것입니다.

Keywords

OHHGBW_2018_v9n12_99_f0001.png 이미지

Fig. 1. Measuring arrangement for Radiation Shielding Sheet

OHHGBW_2018_v9n12_99_f0002.png 이미지

Fig. 2. Relationship with PMMA doses and shield sheet components

OHHGBW_2018_v9n12_99_f0003.png 이미지

Fig. 3. Comparison of internal images with and without PMMA

OHHGBW_2018_v9n12_99_f0004.png 이미지

Fig. 4. Comparison of shielding performance by energy according to PMMA input

OHHGBW_2018_v9n12_99_f0005.png 이미지

Fig. 5. Comparison of tensile strength of shielding sheet

Table 1. Specific characteristics of radiation qualities

OHHGBW_2018_v9n12_99_t0001.png 이미지

References

  1. K. Yue, et al. (2009). A New Lead-free Radiation Shielding Material for Radiotherapy. Radiation Protection Dosimetry, 133(4), 256-260. DOI : 10.1093/rpd/ncp053
  2. S. Xu, M. Bourham & A. Rabiel. (2010). A novel ultra-light structure for radiation shielding. Materials and Diskan 31(4), 2140-2146. DOI : 10.1016/j.matdes.2009.11.011
  3. W. Stam & M. Pillay. (2008). Inspection of Lead Aprons; A Practical Rejection Model. Operational Radiation Safety, 95(2), 133-136. DOI: 10.1097/01.HP.0000314763.19226.86
  4. N. Y. Kwon, Y. K. Jeong, & S. T. Oh. (2017). Effect of powder mixing process on the characteristics of hybrid structure tungsten powders with nano-micro size. Journal of the Korean Powder Metallurgy Institute, 24(5), 384-388. DOI : 10.4150/KPMI.2017.24.5.384
  5. S. Y. Seo1, M. S. Han, C. G. Kim, M. C. Jeon, Y. K. Kim & G. J. Kim. (2017). A study on the usefulness of a fusion model designed cloak shield to reduce the radiation exposure of the assistant during CT of severely injured patient. Journal of the Korea Convergence Society, 8(9) 211-216. DOI : 10.15207/JKCS.2017.8.9.211
  6. I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, & C. Basyigit. (2010). Gamma-ray shielding properties of concrete including barite at different energies. Progress in Nuclear Energy 52(7), 620-623. DOI : 10.1016/j.pnucene.2010.04.006
  7. N. Z. Noor Asman, S. A. Siddiqui & L. M. Low. (2013). Character of micro-sized tungsten oxide-epoxy composites for radiation shielding of diagnostric X-rays. Materials Science and Engineering : C 33(8), 4952-4957. DOI : 10.1016/j.msec.2013.08.023
  8. N. Z. NoorAzman, S. A. Siddiqui, R. Hart & L. M. Low. (2013). Effect of particlesize, filler loadings and x-ray tube voltage on the transmitted x-ray transmission in tungsten oxide-epoxy composites. Applied Radiation and Isotopes 71(1), 62-67. DOI : 10.1016/j.apradiso.2012.09.012
  9. D. H. Kim, S. H. Kim. (2015). Convergence performance evaluation of radiation protection for apron using the PSNR.. Journal of Digital Convergence, 13(10), 377-383. DOI : 10.14400/JDC.2015.13.10.377
  10. S. C. Kim, J. R. Choi, & B. K. Jeon. (2016). Physical analysis of the shielding capacity for a light weight apron designed for shielding low intensity scattering X-rays. Scientific Reports, 6(1), 1-7. DOI : 10.1038/srep27721
  11. A. Koski, K. Yim & S. Shivkumar. (2004). Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters 58(3), 493-497. DOI : 10.1016/S0167-577X(03)00532-9
  12. F. Ganachaud, M. J. Monteiro, R. G. Gilbert, M. A Dourges, S. H. Thang & E. Rizzardo. (2000). Molecular Weight Characterization of Poly(N-iso propylacrylamide) Prepared by Living Free-Radical Polymerization. Macromolecules, 33(18), 6738-6745. DOI: 10.1021/ma0003102
  13. S. M. Choi, E. K. Lee & S. Y. Choi. (2008). Effects of Silane-treated Silica on the Cure Temperature and Mechanical Properties of Elastomeric Epoxy. Polymer Korea, 32(6), 598-602.
  14. J. H. Hubbell. (1982). Photon Mass Attenuation and Energy absorption Coefficients from 1 keV to 20 MeV. Int. Appl. Radiat. Isot., 33(11), 1269-1290. DOI : 10.1016/0020-708X(82)90248-4
  15. S. S. Ray & M. Okamoto, (2003). Progress in Polymer Science, 28, 1539. https://doi.org/10.1016/j.progpolymsci.2003.08.002
  16. J. P. Yang, Z. K. Chen, G. Yang, S. Y. Fu & L. Ye. (2008). Simultaneous improvements in the cryogenic tensile strength, ductility and impact strength of epoxy resins by a hyperbranched polymer. Polymer 49(13), 3168-3175. DOI : 10.1016/j.polymer.2008.05.008
  17. C. Stephan, T. P. Nguyen, M. Lamy de la Chapelle, S. Lefrant, C. Journet & P. Bernie. (2000). Characterization of singlewalled carbon nanotubes-PMMA composites. Synthetic Metals 108(2), 139-149. DOI : 10.1016/S0379-6779(99)00259-3
  18. Z. Jia, Z. Wang, C. Xu, J. Liang, B. Wei, D. Wu & S. Zhu. (1999). Study on poly(methyl methacrylate):carbon nanotube composites, Materials Science and Engineering A, 271(1), 395-400. DOI : 10.1016/S0921-5093(99)00263-4
  19. A. M. Sukegawa, Y. Anayama , S. Ohnishi, S. Sakurai, A. Kaminaga & K. Okuno. (2011). Development of Flexible Neutron-Shielding Resin as an Additional Shielding Material. Journal of Nuclear Science and Technology. 48(3), 585-590. DOI: 10.1080/18811248.2011.9711737
  20. L. Chang, Y. Zhang, Y. Liu, J. Fang, W. Luan, X. Yang & W. Zhang. (2015). Preparation and characterization of tungsten/epoxy composites for X-rays radiation shielding. Nuclear Instruments and Methods in Physics Research B, 356(1), 88-93. DOI : 10.1016/j.nimb.2015.04.062
  21. S. A. M. Issa, A. M. A. Mostafa. (2017). Effect of Bi2O3 in borate-tellurite-silicate glass system for development of gamma-rays shielding materials. Journal of Alloys and Compounds , 695(25), 302-310. DOI : 10.1016/j.jallcom.2016.10.207
  22. R. Li, Y. Gu, Y. Wang, Z. Yang, M. Li, & Z. Zhang. (2017). Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite. Materials Research Express, 4(3), 1-10. DOI: 10.1088/2053-1591/aa6651
  23. S. C. Kim, H. K. Lee & J. H. Cho. (2014). Analysis of low-dose radiation shield effectiveness of multi-gate polymeric sheets. Radiation Effects and Defects in Solids: Incorporating, Plasma Science and Plasma Technology, 169(7), 584-591. DOI : 10.1080/10420150.2014.920019