Fig. 1. Measuring arrangement for Radiation Shielding Sheet
Fig. 2. Relationship with PMMA doses and shield sheet components
Fig. 3. Comparison of internal images with and without PMMA
Fig. 4. Comparison of shielding performance by energy according to PMMA input
Fig. 5. Comparison of tensile strength of shielding sheet
Table 1. Specific characteristics of radiation qualities
References
- K. Yue, et al. (2009). A New Lead-free Radiation Shielding Material for Radiotherapy. Radiation Protection Dosimetry, 133(4), 256-260. DOI : 10.1093/rpd/ncp053
- S. Xu, M. Bourham & A. Rabiel. (2010). A novel ultra-light structure for radiation shielding. Materials and Diskan 31(4), 2140-2146. DOI : 10.1016/j.matdes.2009.11.011
- W. Stam & M. Pillay. (2008). Inspection of Lead Aprons; A Practical Rejection Model. Operational Radiation Safety, 95(2), 133-136. DOI: 10.1097/01.HP.0000314763.19226.86
- N. Y. Kwon, Y. K. Jeong, & S. T. Oh. (2017). Effect of powder mixing process on the characteristics of hybrid structure tungsten powders with nano-micro size. Journal of the Korean Powder Metallurgy Institute, 24(5), 384-388. DOI : 10.4150/KPMI.2017.24.5.384
- S. Y. Seo1, M. S. Han, C. G. Kim, M. C. Jeon, Y. K. Kim & G. J. Kim. (2017). A study on the usefulness of a fusion model designed cloak shield to reduce the radiation exposure of the assistant during CT of severely injured patient. Journal of the Korea Convergence Society, 8(9) 211-216. DOI : 10.15207/JKCS.2017.8.9.211
- I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, & C. Basyigit. (2010). Gamma-ray shielding properties of concrete including barite at different energies. Progress in Nuclear Energy 52(7), 620-623. DOI : 10.1016/j.pnucene.2010.04.006
- N. Z. Noor Asman, S. A. Siddiqui & L. M. Low. (2013). Character of micro-sized tungsten oxide-epoxy composites for radiation shielding of diagnostric X-rays. Materials Science and Engineering : C 33(8), 4952-4957. DOI : 10.1016/j.msec.2013.08.023
- N. Z. NoorAzman, S. A. Siddiqui, R. Hart & L. M. Low. (2013). Effect of particlesize, filler loadings and x-ray tube voltage on the transmitted x-ray transmission in tungsten oxide-epoxy composites. Applied Radiation and Isotopes 71(1), 62-67. DOI : 10.1016/j.apradiso.2012.09.012
- D. H. Kim, S. H. Kim. (2015). Convergence performance evaluation of radiation protection for apron using the PSNR.. Journal of Digital Convergence, 13(10), 377-383. DOI : 10.14400/JDC.2015.13.10.377
- S. C. Kim, J. R. Choi, & B. K. Jeon. (2016). Physical analysis of the shielding capacity for a light weight apron designed for shielding low intensity scattering X-rays. Scientific Reports, 6(1), 1-7. DOI : 10.1038/srep27721
- A. Koski, K. Yim & S. Shivkumar. (2004). Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters 58(3), 493-497. DOI : 10.1016/S0167-577X(03)00532-9
- F. Ganachaud, M. J. Monteiro, R. G. Gilbert, M. A Dourges, S. H. Thang & E. Rizzardo. (2000). Molecular Weight Characterization of Poly(N-iso propylacrylamide) Prepared by Living Free-Radical Polymerization. Macromolecules, 33(18), 6738-6745. DOI: 10.1021/ma0003102
- S. M. Choi, E. K. Lee & S. Y. Choi. (2008). Effects of Silane-treated Silica on the Cure Temperature and Mechanical Properties of Elastomeric Epoxy. Polymer Korea, 32(6), 598-602.
- J. H. Hubbell. (1982). Photon Mass Attenuation and Energy absorption Coefficients from 1 keV to 20 MeV. Int. Appl. Radiat. Isot., 33(11), 1269-1290. DOI : 10.1016/0020-708X(82)90248-4
- S. S. Ray & M. Okamoto, (2003). Progress in Polymer Science, 28, 1539. https://doi.org/10.1016/j.progpolymsci.2003.08.002
- J. P. Yang, Z. K. Chen, G. Yang, S. Y. Fu & L. Ye. (2008). Simultaneous improvements in the cryogenic tensile strength, ductility and impact strength of epoxy resins by a hyperbranched polymer. Polymer 49(13), 3168-3175. DOI : 10.1016/j.polymer.2008.05.008
- C. Stephan, T. P. Nguyen, M. Lamy de la Chapelle, S. Lefrant, C. Journet & P. Bernie. (2000). Characterization of singlewalled carbon nanotubes-PMMA composites. Synthetic Metals 108(2), 139-149. DOI : 10.1016/S0379-6779(99)00259-3
- Z. Jia, Z. Wang, C. Xu, J. Liang, B. Wei, D. Wu & S. Zhu. (1999). Study on poly(methyl methacrylate):carbon nanotube composites, Materials Science and Engineering A, 271(1), 395-400. DOI : 10.1016/S0921-5093(99)00263-4
- A. M. Sukegawa, Y. Anayama , S. Ohnishi, S. Sakurai, A. Kaminaga & K. Okuno. (2011). Development of Flexible Neutron-Shielding Resin as an Additional Shielding Material. Journal of Nuclear Science and Technology. 48(3), 585-590. DOI: 10.1080/18811248.2011.9711737
- L. Chang, Y. Zhang, Y. Liu, J. Fang, W. Luan, X. Yang & W. Zhang. (2015). Preparation and characterization of tungsten/epoxy composites for X-rays radiation shielding. Nuclear Instruments and Methods in Physics Research B, 356(1), 88-93. DOI : 10.1016/j.nimb.2015.04.062
- S. A. M. Issa, A. M. A. Mostafa. (2017). Effect of Bi2O3 in borate-tellurite-silicate glass system for development of gamma-rays shielding materials. Journal of Alloys and Compounds , 695(25), 302-310. DOI : 10.1016/j.jallcom.2016.10.207
- R. Li, Y. Gu, Y. Wang, Z. Yang, M. Li, & Z. Zhang. (2017). Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite. Materials Research Express, 4(3), 1-10. DOI: 10.1088/2053-1591/aa6651
- S. C. Kim, H. K. Lee & J. H. Cho. (2014). Analysis of low-dose radiation shield effectiveness of multi-gate polymeric sheets. Radiation Effects and Defects in Solids: Incorporating, Plasma Science and Plasma Technology, 169(7), 584-591. DOI : 10.1080/10420150.2014.920019