• Title/Summary/Keyword: shell-core

Search Result 693, Processing Time 0.025 seconds

Cyclic loading test for concrete-filled hollow PC column produced using various inner molds

  • Chae-Rim Im;Sanghee Kim;Keun-Hyeok Yang;Ju-Hyun Mun;Jong Hwan Oh;Jae-Il Sim
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.793-804
    • /
    • 2023
  • In this study, cyclic loading tests were conducted to assess the seismic performance of cast-in-place (CIP) concrete-filled hollow core precast concrete columns (HPCC) constructed using steel ducts and rubber tubes. The outer shells of HPCC, with a hollow ratio of 47%, were fabricated using steel ducts and rubber tubes, respectively. Two combinations of shear studs & long threaded bars or cross-deformed bars & V-ties were employed to ensure the structural integrity of the old concrete (outer shell) and new CIP concrete. Up to a drift ratio of 3.8%, the hysteresis loop, yielding stiffness, dissipated energy, and equivalent damping ratio of the HPCC specimens were largely comparable to those of the solid columns. Besides the similarities in cyclic load-displacement responses, the strain history of the longitudinal bars and the transverse confinement of the three specimens also exhibited similar patterns. The measured maximum moment exceeded the predicted moment according to ACI 318 by more than 1.03 times. However, the load reduction of the HPCC specimen after reaching peak strength was marginally greater than that of the solid specimen. The energy dissipation and equivalent damping ratios of the HPCC specimens were 20% and 25% lower than those of the solid specimen, respectively. Taking into account the overall results, the structural behavior of HPCC specimens fabricated using steel ducts and rubber tubes is deemed comparable to that of solid columns. Furthermore, it was confirmed that the two combinations for securing structural integrity functioned as expected, and that rubber air-tubes can be effectively used to create well-shaped hollow sections.

Fabrication of Label-Free Biochips Based on Localized Surface Plasmon Resonance (LSPR) and Its Application to Biosensors (국소 표면 플라즈몬 공명 (LSPR) 기반 비표지 바이오칩 제작 및 바이오센서로의 응용)

  • Kim, Do-Kyun;Park, Tae-Jung;Lee, Sang-Yup
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • In the past decade, we have observed rapid advances in the development of biochips in many fields including medical and environmental monitoring. Biochip experiments involve immobilizing a ligand on a solid substrate surface, and monitoring its interaction with an analyte in a sample solution. Metal nanoparticles can display extinction bands on their surfaces. These charge density oscillations are simply known as the localized surface plasmon resonance (LSPR). The high sensitivity of LSPR has been utilized to design biochips for the label-free detection of biomolecular interactions with various ligands. LSPR-based optical biochips and biosensors are easy to fabricate, and the apparatus cost for the evaluation of optical characteristics is lower than that for the conventional surface plasmon resonance apparatus. Furthermore, the operation procedure has become more convenient as it does not require labeling procedure. In this paper, we review the recent advances in LSPR research and also describe the LSPR-based optical biosensor constructed with a core-shell dielectric nanoparticle biochip for its application to label-free biomolecular detections such as antigen-antibody interaction.

The Posthuman Queer Body in Ghost in the Shell (1995) (<공각기동대>의 현재성과 포스트휴먼 퀴어 연구)

  • Kim, Soo-Yeon
    • Cross-Cultural Studies
    • /
    • v.40
    • /
    • pp.111-131
    • /
    • 2015
  • An unusual success engendering loyalty among cult fans in the United States, Mamoru Oshii's 1995 cyberpunk anime, Ghost in the Shell (GITS) revolves around a female cyborg assassin named Motoko Kusanagi, a.k.a. "the Major." When the news came out last year that Scarlett Johansson was offered 10 million dollars for the role of the Major in the live action remake of GITS, the frustrated fans accused DreamWorks of "whitewashing" the classic Japanimation and turning it into a PG-13 film. While it would be premature to judge a film yet to be released, it appears timely to revisit the core achievement of Oshii's film untranslatable into the Hollywood formula. That is, unlike ultimately heteronormative and humanist sci-fi films produced in Hollywood, such as the Matrix trilogy or Cloud Atlas, GITS defies a Hollywoodization by evoking much bafflement in relation to its queer, posthuman characters and settings. This essay homes in on Major Kusanagi's body in order to update prior criticism from the perspectives of posthumanism and queer theory. If the Major's voluptuous cyborg body has been read as a liberating or as a commodified feminine body, latest critical work of posthumanism and queer theory causes us to move beyond the moralistic binaries of human/non-human and male/female. This deconstruction of binaries leads to a radical rethinking of "reality" and "identity" in an image-saturated, hypermediated age. Viewed from this perspective, Major Kusanagi's body can be better understood less as a reflection of "real" women than as an embodiment of our anxieties on the loss of self and interiority in the SNS-dominated society. As is warned by many posthumanist and queer critics, queer and posthuman components are too often used to reinforce the human. I argue that the Major's hybrid body is neither a mere amalgam of human and machine nor a superficial postmodern blurring of boundaries. Rather, the compelling combination of individuality, animality, and technology embodied in the Major redefines the human as always, already posthuman. This ethical act of revision-its shifting focus from oppressive humanism to a queer coexistence-evinces the lasting power of GITS.

Petrological Study on the Spherulitic Rhyolite in the Jangsan Area, Busan (부산 장산 지역의 구과상(球課狀) 유문암에 대한 암석학적 연구)

  • Park, Sumi;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.219-233
    • /
    • 2013
  • Spherulitic rhyolite occur as part of ring dyke which showing a vertical flowage of $60^{\circ}{\sim}90^{\circ}$, of the Jangsan cauldron was studied. The spherulites range in diameter from a few millimeters to 2.8 centimeters or more, and average 5~10 millimeters. It belongs to radiated simple spherulite type. They consist of a core of moderate brown dense material encased by a thin crust, a few millimeters thick at most of white grey material. The spherulites frequently have a radiating fibrous structure, which are thought to have formed as a consequence of rapid mineral growth caused by very fast cooling of the dykes in shallow depth near the surface. EPMA examination of the concentric-zoned core of spherulites show that they are mainly composed of cryptocrystalline-fibrous intergrowth of silica minerals and alkali feldspars which have $SiO_2$ 82% or more, $Al_2O_3$ 7~10%, $Na_2O+K_2O$ less than 8%. The feldspar compositions of the spherulites lie essentially within the sanidine field. XRD examination show that spherulites are mainly composed of quartz, sanidine, albite with minor mica, kaolinite and chlorite. According to X-ray mapping, the spherulites are enriched in $SiO_2$ in the core and partly enriched $Na_2O$ or $K_2O$, $Al_2O_3$ in the shell that reflect in compositional zoning with increasing spherulitic devitrification. The feathery and non-equant crystal shapes of spherulites from rhyolite dyke of Jangsan cauldron suggest that they may have formed during the rapid cooling of dyke under the static state, or faster velocity of devitrification from glassy materials than movement velocity of the magma intrusion. The spherulitic rhyolite originated from high-silica(75.4~75.7 wt.%) rhyolite magma.

Preparation of Isophorone Diisocyanate-loaded Microcapsules and Their Application to Self-healing Protective Coating (Isophorone Diisocyanate 함유 마이크로캡슐의 제조와 자기치유형 보호코팅재에의 응용)

  • Lim, Ye-Ji;Song, Young-Kyu;Kim, Dong-Min;Chung, Chan-Moon
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.56-63
    • /
    • 2015
  • The object of this study is to prepare microcapsules containing a diisocyanate compound, apply them to self-healing protective coating, and evaluate the self-healing capability of the coating by atmospheric moisture. Isophorone diisocyanate (IPDI) polymerized under humid atmosphere, indicating that IPDI can be used as a healing agent. Microencapsulations of IPDI were conducted via interfacial polymerization of a polyurethane prepolymer with diol compounds. The formation of microcapsules was confirmed by Fourier-transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. The mean diameter, size distribution, morphology and shell wall thickness of microcapsules were investigated by optical microscopy and scanning electron microscopy (SEM). The properties of microcapsules were studied by varying agitation rates and diol structure. The self-healing coatings were prepared on test pieces of CRC board. When scratch was generated in the coatings, the core material flew out of the microcapsules and filled the scratch. The self-healing coatings were damaged and healed under atmosphere with 68~89% relative humidity for 48 h, and SEM and impermeability test for the specimens showed that the scratch could be healed by atmospheric moisture.

Preparation of Monodispersed Silica-Rubitherm®Microparticles Using Membrane Emulsification and Their Latent Heat Properties (막유화법을 이용한 단분산성 실리카-루비덤® 마이크로 입자의 제조 및 잠열 특성)

  • Kim, Soo-Yeon;Jung, Yeon-Seok;Lee, Sun-Ho;You, Jin-Oh;Youm, Kyung-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.215-225
    • /
    • 2015
  • Recently, the importance of energy saving and alternative energy is significantly increasing due to energy depletion and the phase change material (PCM) research for saving energy is also actively investigating. In this research, the membrane emulsification using SPG membrane was used to make various microencapsulated phase change material (MPCM) particles which were comprised of $Rubitherms^{(R)}$ (RT-21 and RT-24) core and silica coating. We investigated the pressure of the dispersion phase, the concentration of surfactant, and the ratio of $Rubitherm^{(R)}$ and silica to prepare various MPCM particles. The DSC and TGA were used to examine the heat stability and latent heat properties. Also, PSA, SEM, and optical microscopy were used to confirm the size of $Rubitherm^{(R)}$ particles and the thickness of silica shell. The average of particle size was $7-8{\mu}m$. And, FT-IR was also used to enforce the qualitative analysis. Finally, the MPCM particles obtained from membrane emulsification showed monodispersed size distribution and the heat stability and latent heat were kept up to 80% compared to pure $Rubitherm^{(R)}$. So, it can be effectively used for wallpaper, buildings and interior products for energy saving as PCMs.

The Physical Properties Analysis of Epoxy Resins Incorporated with Toughening Agents (에폭시 강인성 향상 첨가제의 적용 및 물성 분석)

  • Kim, Daeyeon;Kim, Soonchoen;Park, Young-IL;Kim, Young Chul;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.16 no.3
    • /
    • pp.101-107
    • /
    • 2015
  • Epoxy resin toughening agents such as core/shell nanoparticles, CTBN epoxy, polyester polyols, and polyurethane have been widely used in order to compensate for the brittleness and improve the impact resistance of the epoxy resin. In this work, a few tougheners mentioned above were individually added into adhesive compositions to observe the effects of physical and mechanical properties. Both flexural strength and flexural modulus were measured with UTM while impact strength was analyzed with Izod impact tester. The obtained results showed that the addition of toughening agents afforded positive performance in terms of flexibility and impact resistance of the cured epoxy resin. Furthermore, DMA experiments suggested that the trends of storage modulus data of each epoxy resin composition coincided with the trends of flexural modulus data. FE-SEM images showed that toughening agents formed circled-shape particles when it was cured in epoxy resin composition at high temperature by phase separation. The existence of particles in the cured samples explains why epoxy resin with toughener has higher impact resistance.

Studies on Predicting the Kiln Drying Time and Moisture Content of Board and Dimension Lumber of Pinus densiflora using an Internal Moisture Diffusion Model of Softwood (침엽수재(針葉樹材)의 수분확산(水分擴散)모델을 이용(利用)한 소나무판재(板材)와 평소각재(平小角材)의 열기건조(熱氣乾燥) 시간(時間)과 함수율(含水率) 추정(推定)에 관(關)한 연구(硏究))

  • Lee, Sang-Bong;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.67-81
    • /
    • 1989
  • This experiment was carried out to know the mothod of changing the step of moisture content schedule with time in conventional kiln drying. For the purpose of this object. we made drying model by applying the moisture diffusion model by J.FSiau(1984) to average moisture content equation by J.Crank(1956) derived it from Fick's second law. And to verify this method of drying model. 2.5cm-thick boards and 5.0cm-thick dimension lumbers of Pinus densiflora were kiln-dried with the schedule of T11-C3 and T10-C4, respectively. And then the drying rates were investigated and compared with those calculated from drying model. The results obtained were as follows 1. Average drying rate and total drying time of board to dry to 6.5% moisture content were 0.64%/hr and 109hr., and those of dimension lumber to dry to 8.3% moisture content were 0.4%/hr. and 162hr., respectively. 2. The moisture content of shell and core decreased by equalizing treatment and increased by conditioning treatment both on board and dimension lumber. But the moisture gradient was lower after conditioning than after equalizing. 3. As the drying was proceeded, the transverse bound water diffusion coefficient all but linearly decreased, the water vapor diffusion coefficient abruptly curvilinearly increased, while the transverse diffusion coefficient curvilinearly decreased both on board and dimension lumber. But each of diffusion coefficients on board was larger than that on dimension lumber. 4. Compared to experimential drying rate of board. theoretical drying rate was larger at 30.0%-21.8% moisture content range and was similiar at 21.8%-5.4% moisture content. And in case of dimension lumber, the drying rate was similiar at 30.0%-16.1% moisture content range but theoretical drying rate was much lower at 16.1%-8.3% moisture content range. 5. The possibility of adapting this drying model to changing the moisture content schedule step with time was in the range of 21.8%-5.4% moisture content on board. And in the case of dimension lumber that was in the range of 30.0%-16.1% moisture content.

  • PDF

Ultrastructural Study of Vitellogenesis during Oogenesis and Sexual Maturation of the Female Neptunea (Barbitonia) arthritica cumingii on the West Coast of Korea (한국 서해산 암컷 갈색띠매물고둥, Neptunea (Barbitonia) arthritica cumingii의 난자형성과정 중 난황 형성의 미세구조적 연구 및 성 성숙)

  • Chung, Ee-Yung
    • Development and Reproduction
    • /
    • v.9 no.1
    • /
    • pp.23-31
    • /
    • 2005
  • Vitellogenesis during oogenesis, reproductive cycle and first sexual maturity of the female Neptunea (Barbitonia) arthritica cumingii was investigated by light and electron microscope observations. In the early vitellogenic oocyte, the Golgi complex and mitochondria were involved in the formation of lipid droplets and yolk granules. In late vitellogenic oocytes, the rough endoplasmic reticulum and multivesicular bodies were involved in the formation of proteid yolk granules in the cytoplasm. A mature yolk granule was composed of three components: main body(central core), superficial layer, and the limiting membrane. The spawning season was between May and August and the main spawning occurred between June and July when the seawater temperature rose to approximately $18{\sim}23^{\circ}C$. The female reproductive cycle can be classified into five successive stages: early active stage(September to October), late active stage(November to February), ripe stage(February to June), partially spawned stage(May to August), and recovery stage(June to August). The rate of individuals reaching the first sexual maturity was 53.1% in females of 51.0 to 60.9mm in shell height, and 100% in those over 61.0mm.

  • PDF

Preparation of Composite Particles via Electroless Nickel Plating on Polystyrene Microspheres and Effect of Plating Conditions (무전해 니켈 도금된 폴리스티렌 복합 입자 제조 및 도금 조건의 영향)

  • Kim, Byung-Chul;Park, Jin-Hong;Lee, Seong-Jae
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • Polymer core and metal shell composite particles have been prepared by the electroless nickel plating on the surface of monodisperse polystyrene microspheres. Various sizes of polystyrene particles with highly monodisperse state could be synthesized by controlling the dispersion medium in dispersion polymerization. Electroless nickel plating was performed on the polystyrene particle with diameter of $3.4\;{\mu}m$. The morphology of polystyrene/nickel composite particles was investigated to see the effect of the plating conditions, such as the $PdCl_2$ and glycine concentrations and the dropping rate of nickel plating solution, on nickel deposition. With $PdCl_2$ and glycine concentrations at more than 0.4 g/L and 1 M, respectively, more uniform nickel layer and less precipitated nickel aggregates were formed. At the given plating time of 2 h, the same amount of plating solution was introduced by varying the dropping rate. Though the effect of dropping rate on particle morphology was not noticeable, the dropping rate of 0.15 mL/min for 60 min showed rather uniform plating.