• Title/Summary/Keyword: shell-core

Search Result 694, Processing Time 0.026 seconds

Synthesis of Inorganic/Organic Core-Shell Polymer Using Polyoxyethylene Alkylether Sulfate as a Surfactant (Polyoxyethylene Alkylether Sulfate 계면활성제를 사용한 무기/유기 코어-셀의 합성)

  • Kim, Duck-Sool;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.93-97
    • /
    • 2010
  • Silicone dioxide absorbed polyoxyethylene alkylether sulfate (EU-S75D) surfactant was prepared. The core-shell composite of inorganic/organic were polymerized by using styrene(St) as a shell monomer and potassium persulfate(KPS) as an initiator. We studied the effect of surfactants on the core-shell structure of silicone dioxide/styrene in the presence of an anionic surfactant lauryl sulfate(SLS). The structure of core-shell polymer were investigated by measuring to the thermal decomposition of polymer composite using thermogravimetric analyzer(TGA) and morphology of latex by scanning electron microscope(SEM).

Synthesis of Trimetallic Au@Pb@Pt Core-shell Nanoparticles and their Electrocatalytic Activity toward Formic Acid and Methanol

  • Patra, Srikanta;Yang, Hae-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1485-1488
    • /
    • 2009
  • A facile, seed-mediated preparation method of trimetallic Au@Pb@Pt core-shell nanoparticles is developed. Au nanoparticles are the template seeds onto which sequentially reduced Pb and Pt are deposited. The trimetallic core-shell structure is confirmed by UV-Vis spectroscopy, TEM and EDS analysis, and cyclic voltammetry. The trimetallic Au@Pb@Pt core-shell nanoparticles show high electrocatalytic activity for formic acid and methanol electrooxidation.

Synthesis and Application of cPSMA-PSMA Microcapsule Absorbent for Cement Mortars (시멘트 모르타르용 cPSMA-PSMA 마이크로캡슐 흡수제 제조 및 적용)

  • Hwang, Ki-Seob;Jang, Seok-Soo;Jung, Yong-Wook;Lee, Seung-Han;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.216-222
    • /
    • 2012
  • We synthesized microcapsule absorbent with crosslinked poly(styrene-$alt$-maleic anhydride) (PSMA) as a core and PSMA as a shell by a precipitation polymerization method for the delayed absorption of excess water in cement mortar. cPSMA-PSMAs with core-shell structure were synthesized with ratios of 1/1, 1/2 and 1/3 as core monomer mass to shell monomer mass to control shell thickness. We observed the hydrolysis of PSMA in cement-saturated aqueous solution by a FTIR spectrometer. We observed good core-shell structure microcapsules for 1/2(cPSMA #3), but observed incomplete core-shell structure for 1/1(cPSMA #2) and 1/3(cPSMA #4) of core/shell monomer ratios. The swelling ratio of cPSMA #3 in cement-saturated aqueous solution was increased until 20 min. After that it was decreased until 2 hrs swelling time, and they started to increase again. The viscosities of cement paste with cPSMA #3 microcapsules were very slowly increased until 1 hr and increased fast after 1.5 hrs. Cement mortar with 0.5 wt% cPSMA #1 having only core part showed about 5% increase in compressive strength compared to that of plain cement mortar. cPSMA #3 added cement mortar showed the highest compressive strength with 7% increase.

Synthesis and Effect of Plasma Treatment of Acrylic Composite Particle Binder (아크릴계 복합입자 바인더의 제조와 플라즈마 처리영향)

  • Sim, Dong-Hyun;Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.276-283
    • /
    • 2008
  • Kind of monomer(MMA, EA, BA, St)and the monomer ratio(80/20 to 20/80) where changed in the preparation of the core shell binder, and property was improved the plasma processing. Each material changed by plasma treatment time($1{\sim}10\;s$) to change to measure the tensile strength, contact angle and adhesion peel strength for the core shell binder optimal conditions for handling the output of the surface treatment. The type of polymerization and composition of the binder is a regardless initiator of APS, the reaction temperature of $85^{\circ}C$ to 0.3 wt% of the surfactant used to indicate when the conversion rate was the highest, core shell composite particle binder got two glass temperature curves. Core shell binder after the plasma processing contact angle change is the PEA/PSt 38 percent of cases within five seconds to indicate slight decrease was a decline rapidly if not handled $0^{\circ}$ to reach. Tensile strength PSt/PMMA varies $46.71{\sim}46.27\;kg_f$/2.5 cm and adhesion strength PEA/PMMA varies $7.89{\sim}14.44\;kg_f$/2.5 cm increases. Overall, adhesion strength of core shell composite particle is in the order of order PEA>PBA>PSt for shell monomer MMA.

A Study on the Environmentally Fraternized Preparation of Core-Shell Binder (환경친화적인 Core-Shell Binder의 제조에 관한 연구)

  • Kwon, Jae-Beom;Lee, Nae-Woo;Seol, Soo-Duck;Lim, Jae-Koel;Lim, Jong-Min
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.78-84
    • /
    • 2003
  • Core-shell composite particles of organic/organic were polymerized by using monomers such as methyl methacrylate(MMA) and styrene(St) in the presence of sodium dodecyl benzene sulfonate (SDBS) below critical micelle concentration(CMC) changing concentration, kind of initiators, emulsifiers, addition method of monomers and speed of agitation. In the PMMA/PSt and PSt/PMMA core-shell polymerization, to suppress the generation of new particles and to minimize the coagulation during the shell polymerization, the optimum conditions were $1.45{\times}10^{-5}mol/L$ and $2.91{\times}10^{-5}mol/L$ at concentration of SDBS respectively. The optimum concentration of the other initiator was $1.58{\times}10^{-3}mol/L$ of ammonium persulfate(APS) for core polymerization and $4.0{\times}10^{-4}mol/L$ of APS for shell polymerization.

A Study on the Environmental Fraternized Preparation of Inorganic/organic Core-shell Binder (환경친화적인 무기/유기 Core-Shell의 제조에 관한 연구)

  • Seoul, Soo-Duk;Lim, Jae-Keel;Lim, Jong-Min;Kwon, Jae-Beom;Lee, Nae-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.81-87
    • /
    • 2004
  • Composite particles using inorganic and organic chemicals were synthesized and the results of those reaction were compared to variation of temperature and agitation speed in presence of $CaCO_3$ which was adsorbed SDBS. Also the synthesises were optimized according to conversion rate of composite particles. In inorganic/organic core-shell composite particle polymerization, $CaCO_3$ adsorbed by 0.5wt% surfactant SDBS was prepared initially and then core $CaCO_3$ was encapsulated by sequential emulsion polymerization using MMA at the addition of APS 3.16${\times}$$10^{-3}$mol/L to minimize the coagulated PMMA particle itself during MMA shell polymerization. Encapsulated PMMA on $CaCO_3$ as inorganic/organic core-shell particles was verified by FT-IR and DSC analysis. It was found that the $CaCO_3$ was very well encapsulated by PMMA as shell. The surfaces were distinctly found as spindle shape and broad particle distribution after capsulation.

Synthesis on the Core-Shell Polymer of Silicone Dioxide/Styrene Using Sodium Dioctyl Sulfosuccinate (EU-DO133L) as a Surfactant (계면활성제 Sodium Dioctyl Sulfosuccinate (EU-DO133L)을 사용한 이산화규소/스티렌의 코어-셀 고분자의 합성)

  • Kim, Duck-Sool;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.183-187
    • /
    • 2010
  • Core-Shell polymers of silicone dioxide-styrene system were prepared by sequential emulsion polymerization. In inorganic/organic Core-Shell composite particle polymerization, silicone dioxide adsorbed by surfactant sodium dioctyl sulfosuccinate (EU-DO133L) was prepared initially and then core silicone dioxide was encapsulated emulsion by sequential emulsion polymerization using styrene at the addition of potassium persulfate (KPS) as an initiator. We found that $SiO_2$ core shell of $SiO_2$/styrene structure was formed when polymerization of styrene was conducted on the surface of $SiO_2$ particles, and the concentration sodium dioctyl sulfosuccinate (EU-DO133L) was 0.5~2.0g. The structure of core-shell polymer were investigated by measuring to the thermal decomposition of polymer composite using thermogravimetric analyzer and morphology of latex by scanning electron microscope(SEM).

Au-Ag Core Shell Nanowire Network for Highly Stretchable and Transparent Supercapacitor Applications (금-은 코어쉘 나노 와이어 제조 및 투명, 유연 슈퍼캐패시터 전극으로의 활용에 관한 연구)

  • Lee, Ha-Beom;Gwon, Jin-Hyeong;Jo, Hyeon-Min;Eom, Hyeon-Jin;Go, Seung-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.183.1-183.1
    • /
    • 2016
  • Due to the latest research trend toward wearable energy devices, transparent and stretchable supercapacitors which can sustain their performance even under physical deformation have steadily attracted huge attention. Despite the Ag NW is the most promising candidate for fabrication of transparent and stretchable electronics, the electrochemical instability interrupts its application to development of the energy device. Here, we introduce a transparent and highly stretchable supercapacitor made by Au-Ag core shell NW network percolation electrode. The Au-Ag core shell NW synthesized by a simple solution process not only shows excellent electrical conductivity but also greatly enhanced chemical and electrochemical stability compare to pristine Ag NW. These outstanding properties of the Au-Ag core shell NW are attributed both to the core Ag NW and the Au protecting sheath layer. The proposed Au-Ag core shell NW based supercapacitor exhibits optical transmittance with outstanding mechanical stability withstanding 60% strain without any decrease of the performance. The supercapacitors connected in series are charged and discharged stable in 30% strain turning on a red LED. These notable results demonstrate the potential of the Au-Ag core shell NW as a strong candidate for development of wearable energy devices.

  • PDF

Autoxidation Core@Anti-Oxidation Shell Structure as a Catalyst Support for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell

  • Heo, Yong-Kang;Lee, Seung-Hyo
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.412-417
    • /
    • 2022
  • Proton exchange membrane fuel cells (PEMFCs) provide zero emission power sources for electric vehicles and portable electronic devices. Although significant progresses for the widespread application of electrochemical energy technology have been achieved, some drawbacks such as catalytic activity, durability, and high cost of catalysts still remain. Pt-based catalysts are regarded as the most efficient catalysts for sluggish kinetics of oxygen reduction reaction (ORR). However, their prohibitive cost limits the commercialization of PEMFCs. Therefore, we proposed a NiCo@Au core shell structure as Pt-free ORR electrocatalyst in PEMFCs. NiCo alloy was synthesized as core to introduce ionization tendency and autoxidation reaction. Au as a shell was synthesized to prevent oxidation of core NiCo and increase catalytic activity for ORR. Herein, we report the synthesis, characterization, electrochemical properties, and PEMFCs performance of the novel NiCo@Au core-shell as a catalyst for ORR in PEMFCs application. Based on results of this study, possible mechanism for catalytic of autoxidation core@anti-oxidation shell in PEMFCs is suggested.

Fabrication of $Al_2O_3$ nanotube with etching core material of one-dimensional ZnO/$Al_2O_3$ core/shell structure (1차원 ZnO/$Al_2O_3$ core/shell 구조에서 core 물질 식각방법에 의한 $Al_2O_3$ 나노튜브제작)

  • Hwang, Joo-Won;Min, Byung-Don;Lee, Jong-Su;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.37-40
    • /
    • 2003
  • Amorphous $Al_2O_3$ nanotubes have been fabricated by utilizing the ZnO nanowires as template with wet etching method. ZnO nanowires synthesized by thermal evaporation are conformally coated with $Al_2O_3$ by atomic-layer deposition(ALD) method. The $Al_2O_3$-coated ZnO nanowires are of core-shell structure; ZnO core nanowires and $Al_2O_3$ shells. When the $ZnO/Al_2O_3$ core-shell structure is dipped in $H_3PO_4$ solution at $25^{\circ}C$ for a 6 min, the core ZnO materials are completely etched, and only $Al_2O_3$ nanotubes are remained. This nanotube fabrication is technically easier than others, and simply approachable. Transmission electron microscopy shows that the $Al_2O_3$ nanotubes have various thicknesses that can be controlled.

  • PDF