DOI QR코드

DOI QR Code

Synthesis of Trimetallic Au@Pb@Pt Core-shell Nanoparticles and their Electrocatalytic Activity toward Formic Acid and Methanol

  • Patra, Srikanta (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University) ;
  • Yang, Hae-Sik (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University)
  • Published : 2009.07.20

Abstract

A facile, seed-mediated preparation method of trimetallic Au@Pb@Pt core-shell nanoparticles is developed. Au nanoparticles are the template seeds onto which sequentially reduced Pb and Pt are deposited. The trimetallic core-shell structure is confirmed by UV-Vis spectroscopy, TEM and EDS analysis, and cyclic voltammetry. The trimetallic Au@Pb@Pt core-shell nanoparticles show high electrocatalytic activity for formic acid and methanol electrooxidation.

Keywords

References

  1. Aiken III, J. D.; Finke, R. G. J. Mol. Catal. A 1999, 145, 1 https://doi.org/10.1016/S1381-1169(99)00098-9
  2. Raimondi, F.; Scherer, G. G.; Kötz, R.; Wokaun, A. Angew. Chem., Int. Ed. 2005, 44, 2190 https://doi.org/10.1002/anie.200460466
  3. Zhong, C.-J.; Maye, M. M. Adv. Mater. 2001, 13, 1507 https://doi.org/10.1002/1521-4095(200110)13:19<1507::AID-ADMA1507>3.0.CO;2-#
  4. Luo, J.; Wang, L.; Mott, D.; Njoki, P. N.; Lin, Y.; He, T.; Xu, Z.; Wanjana, B. N.; Lim, I.-I. S.; Zhong, C.-J. Adv. Mater. 2008, 20, 4342 https://doi.org/10.1002/adma.200703009
  5. Tao, F.; Grass, M. E.; Zhang, Y.; Butcher, D. R.; Renzas, J. R.; Liu, Z.; Chung, J. Y.; Mun, B. S.; Salmeron, M.; Somorjai, G. A. Science 2008, 322, 932 https://doi.org/10.1126/science.1164170
  6. Lima, F. H. B.; Zhang, J.; Shao, M. H.; Sasaki, K.; Vukmirovic, M. B.; Ticianelli, E. A.; Adžić, R. R. J. Phys. Chem. C 2007, 111, 404 https://doi.org/10.1021/jp065181r
  7. Mott, D.; Luo, J.; Njoki, P. N.; Lin, Y.; Wang, L.; Zhong, C.-J. Catal. Today 2007, 122, 378 https://doi.org/10.1016/j.cattod.2007.01.007
  8. Scodeller, P.; Flexer, V.; Szamocki, R.; Calvo, E. J.; Tognalli, N.; Troiani, H.; Fainstein, A. J. Am. Chem. Soc. 2008, 130, 12690 https://doi.org/10.1021/ja802318f
  9. Tian, Z.-Q.; Ren, B.; Li, J.-F.; Yang, Z.-L. Chem. Commun. 2007, 3514
  10. Mrozek, M. F.; Xie, Y.; Weaver, M. J. Anal. Chem. 2001, 73, 5953 https://doi.org/10.1021/ac0106391
  11. Matsumoto, F.; Roychowdhury, C.; DiSalvo, F. J.; Abruna, H. D. J. Electrochem. Soc. 2008, 155, B148 https://doi.org/10.1149/1.2814082
  12. Wang, J.; Thomas, D. F.; Chen. A. Anal. Chem. 2008, 80, 997 https://doi.org/10.1021/ac701790z
  13. Roychoudhary, C.; Matsumoto, F.; Zeldovich, V. B.; Warren, S. C.; Mutolo, P. F.; Ballesteros, M.; Wiesner, U.; Abruna, H. D.; DiSalvo, F. J. Chem. Mater. 2006, 18, 3365 https://doi.org/10.1021/cm060480e
  14. Toshima, N.;Yonezawa, T. New. J. Chem. 1998, 1179
  15. Wang, Y.; Cai, L.; Xia, Y. Adv. Mater. 2005, 17, 473 https://doi.org/10.1002/adma.200401416
  16. Panigrahi, S.; Basu, S.; Praharaj, S.; Pande, S.; Jana, S.; Pal, A.; Ghosh, S. K.; Pal, T. J. Phys. Chem. C 2007, 111, 4596 https://doi.org/10.1021/jp067554u
  17. Park, S.; Wasileski, S. A.; Weaver, M. J. J. Phys. Chem. B 2001, 105, 9719 https://doi.org/10.1021/jp011903x
  18. Kunz, H. R.; Grover, G. A. J. Electrochem. Soc. 1975, 122, 1279 https://doi.org/10.1149/1.2134000
  19. Wang, H.; Xu, C.; Cheng, F.; Zhang, M.; Wang, S.; Jiang, S. P. Electrochem. Commun. 2008, 10, 1575 https://doi.org/10.1016/j.elecom.2008.08.011
  20. Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Nature Mater. 2008, 7, 333 https://doi.org/10.1038/nmat2156
  21. Prabhuram, J.; Zhao, T. S.; Tang, Z. K.; Chen, R.; Liang, Z. X. J. Phys. Chem. B 2006, 110, 5245 https://doi.org/10.1021/jp0567063
  22. Frens, G. Nat. Phys. Sci. 1973, 241, 20 https://doi.org/10.1038/physci241020a0
  23. Aziz, M. A.; Yang, H. B. Kor. Chem. Soc. 2007, 28, 1171 https://doi.org/10.5012/bkcs.2007.28.7.1171
  24. Das, J.; Aziz, M. A.; Yang, H. J. Am. Chem. Soc. 2006, 128, 16022 https://doi.org/10.1021/ja0672167
  25. Patra, S.; Das, J.; Yang, H. Electrochim. Acta 2009, 54, 3441 https://doi.org/10.1016/j.electacta.2009.01.022

Cited by

  1. Advanced bimetallic In–Cu/Ag/Au nanostructures via microemulsion-based reaction vol.2, pp.25, 2012, https://doi.org/10.1039/c2ra21659k
  2. Rapid Green Synthetic Protocol for Novel Trimetallic Nanoparticles vol.2013, pp.2314-4858, 2013, https://doi.org/10.1155/2013/168916
  3. Trimetallic nanostructures: the case of AgPd–Pt multiply twinned nanoparticles vol.5, pp.24, 2013, https://doi.org/10.1039/c3nr03831a
  4. A porous trimetallic Au@Pd@Ru nanoparticle system: synthesis, characterisation and efficient dye degradation and removal vol.3, pp.38, 2015, https://doi.org/10.1039/C5TA03959B
  5. Green synthesis of multi-metallic nanocubes vol.7, pp.56, 2017, https://doi.org/10.1039/C7RA05493A
  6. Effects of catalyst load in Pt and Pb-based catalysts using formic acid oxidation as a model vol.199, pp.None, 2009, https://doi.org/10.1016/j.jpowsour.2011.10.044
  7. In situ synthesis of graphene supported Ag@CoNi core-shell nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane and methylamine borane vol.1, pp.34, 2009, https://doi.org/10.1039/c3ta11835e
  8. Synthesis of Triple‐Layered Ag@Co@Ni Core–Shell Nanoparticles for the Catalytic Dehydrogenation of Ammonia Borane vol.20, pp.2, 2009, https://doi.org/10.1002/chem.201302943
  9. Strategic synthesis of graphene supported trimetallic Ag-based core-shell nanoparticles toward hydrolytic dehydrogenation of amine boranes vol.39, pp.7, 2009, https://doi.org/10.1016/j.ijhydene.2013.12.089
  10. Seeded growth core-shell (Ag–Au–Pd) ternary nanostructure at room temperature for potential water treatment vol.89, pp.None, 2009, https://doi.org/10.1016/j.polymertesting.2020.106720