• Title/Summary/Keyword: shell structure

Search Result 1,062, Processing Time 0.024 seconds

Buckling of the multi-vaulted "Aster" shell under axial compression alone or combined with an external pressure

  • Araar, M.;Derbali, M.;Jullien, J.F.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.7
    • /
    • pp.827-839
    • /
    • 1998
  • This paper presents a study of buckling of the multi-vaulted cylindrical shell ("Aster"), under an axial compression alone or combined with an external pressure. This shell which was presented in a recent paper is a self-stiffened structure having a satisfactory behaviour and a higher buckling strength under external pressure than a circular cylindrical shell with the same dimensions. The results of this study emphasize the interest of the behaviour of the "Aster" shell under two other types of loading, revealing an acceptable level of strength which is favorable for an expansion of its use in other areas.

Evaluation of Structural Performance of Natural Draught Cooling Tower according to Shell Geometry using Wind Damage Analysis - Part I : One-shell Geometry (풍하중에 의한 손상해석을 이용한 기하형상에 따른 자연 습식 냉각탑의 구조성능 평가 - Part I : One-shell 기하형상)

  • Lee, Sang-Yun;Noh, Sam-Young
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.3
    • /
    • pp.67-78
    • /
    • 2016
  • Determining of the shape in the process of design for natural draught cooling tower is very important, because the shape of hyperbolic shell is respond sensitively to dynamic behavior of the whole cooling tower against wind load. In engineering practice, the geometric parameters have been determining based on the natural frequency. This study analyses influence of the tower shell geometric parameters on the structural behavior. For three representative models were selected, they were analyzed based on evaluation of damage by means of nonlinear FE-method. As a result, a hyperbolic rotational shell with the small radius overall was the lowest damage index induced by sufficient capacity of the stress redistribution and thus a wind-insensitive structure.

An Eccentric Degenerated Shell Element for the Geometrically Nonlinear Analysis of Stiffened Structures (보강된 구조물의 기하학적 비선형 해석을 위한 편심 응축 셸 요소)

  • Lee, Won-Jae;Lee, Byeong-Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1721-1730
    • /
    • 2000
  • An eccentric degenerated shell element with geometric non-linearity for the precise and efficient analysis of stiffened shell structures is developed. To deal with the eccentricity, we define the e ccentric shell and the master shell that constitute one combined shell. It is assumed that the sections remain plane after deformation. The internal force vector and the tangent stiffness matrix based on the virtual work principle in the natural coordinate system are derived. To enhance the robustness of the element, assumed strain method for transverse shear and membrane strains is used. Through numerical experiments the effectiveness of the proposed element is demonstrated.

Linear Buckling Analysis of Thin-walled Structures by Flat Shell Elements with Drilling D.O.F. (회전자유도를 갖는 평면쉘요소에 의한 박판구조물의 선형 좌굴해석)

  • 최창근;송명관
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.258-265
    • /
    • 1998
  • Application of the flat shell element with drilling D.O.F to linear buckling analysis of thin-walled structures is presented in this paper. The shell element has been developed basically by combining a membrane element with drilling D.O.F. and Mindlin plate bending element. Thus, the shell element possesses six degrees-of-freedom per node which, in addition to improvement of the element behavior, permits an easy connection to other six degrees-of-freedom per node elements(CLS, Choi and Lee, 1995). Accordingly, structures like folded plate and stiffened shell structure, for which it is hard to find the analytical solutions, can be analyzed using these developed flat shell elements. In this paper, linear buckling analysis of thin-walled structures like folded plate structures using the shell elements(CLS) with drilling D.O.F. to be formulated and then fulfilled. Subsequently, buckling modes and the critical loads can be output. Finally. finite element solutions for linear buckling analysis of folded plate structures are compared with available analytic solutions and other researcher's results.

  • PDF

Design Suggestion of Catenary Shell using Grasshopper Script (Grasshopper를 이용한 Catenary Shell 설계 방법 제안)

  • Lee, Joo Ho;Cho, Ah Sir;Kim, Sanghee;Kang, Thomas H.-K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.31-38
    • /
    • 2016
  • The objective of this study is to propose methods to design and analyze a catenary shell using a computer program without experiments and measurements. The intial idea stems from Pendergrast's study, but his method should be improved. In this study, the process of making catenary shell using computer was reproduced by Grasshopper script. In order to enhance credibility, two models from Grasshopper script were analyzed by SAP2000; one was just a square-based catenary shell, while the other was the re-created shell originated from the Naturtheater $Gr{\ddot{o}}tzingen$. The outcome of analysis was reasonable.

A new piezoelectric shell element and its application in static shape control

  • Chen, Su Huan;Yao, Guo Feng;Lian, Hua Dong
    • Structural Engineering and Mechanics
    • /
    • v.12 no.5
    • /
    • pp.491-506
    • /
    • 2001
  • In this paper, a new three-dimensional piezoelectric thin shell element containing an integrated distributed piezoelectric sensor and actuator is proposed. The distributed piezoelectric sensor layer monitors the structural shape deformation due to the direct effect and the distributed actuator layer suppresses the deflection via the converse piezoelectric effect. A finite element formulation is presented for static response of laminated shell with piezoelectric sensors/actuators. An eight-node and forty-DOF shell element is built. The performance of the shell elements is improved by reduced integration technique. The static shape control of structure is derived. The shell element is verified by calculating piezoelectric polymeric PVDF bimorph beam. The results agreed with those obtained by theoretical analysis, Tzou and Tseng (1990) and Hwang and Park (1993) fairly well. At last, the static shape control of a paraboloidal antenna is presented.

One-pot synthesis of PdAu bimetallic composite nanoparticles and their catalytic activities for hydrogen peroxide generation

  • Xiao, Xiangyun;Kang, Tae-Uook;Nam, Hyobin;Bhang, Suk Ho;Lee, Seung Yong;Ahn, Jae-Pyung;Yu, Taekyung
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2379-2383
    • /
    • 2018
  • We report a facile one-pot aqueous-phase synthesis of PdAu bimetallic nanoparticles with different Pd/Au ratio. The synthesis was conducted by co-reduction of Pd and Au precursor using ascorbic acid as a reducing agent and in the presence of polyallylamine hydrochloride (PAH). By high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectrometry (EDS) analyses, we found that the synthesized nanoparticles had an onion-like core/shell/shell/shell structure with Au-rich core, Pd-rich shell, Au-rich shell, and Pd shell, respectively. We also investigated the catalytic performance of the synthesized PdAu nanoparticles toward hydrogen peroxide generation reaction.

Free Vibrations of Fluid-filled Cylindrical Shells on Partial Elastic Foundations (부분 탄성지지된 유체 저장 원통셸의 자유진동)

  • Jung, Kang;Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.763-770
    • /
    • 2012
  • The free vibration characteristics of fluid-filled cylindrical shells on partial elastic foundations are investigated by an analytical method. The cylindrical shell is fully or partially surrounded by the elastic foundations, these are represented by the Winkler or Pasternak model. The motion of shell is represented by the first order shear deformation theory to account for rotary inertia and transverse shear strains. The steady flow of fluid is described by the classical potential flow theory. The fluid-structure interaction is considered in the analysis. The effect of internal fluid can be considered by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. To validate the present method, the numerical example is presented and compared with the available existing results.

Design Sensitivity Analysis of Elasto-perfectly-plastic Structure for Stiffened Shell Structure (탄성-완전-소성 보강쉘 구조물의 설계민감도해석)

  • Jung, Jae-Joon;Lee, Tae-Hee;Lim, Jang-Keun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.746-752
    • /
    • 2001
  • Design sensitivity analysis for nonlinear structural problems has been emerged in the last decade as a glowing area of engineering research. As a result, theoretical formulations and computational algorithms have already developed for design sensitivity of nonlinear structural problems. There is not enough research for practical nonlinear problems using multi-element, due to difficulties of implementation into FEA. Therefore, nonlinear response analysis for stiffened shell which consists of Mindlin plate and Timoshenko beam, was considered. Specially, it presents the backward-Euler method which is adopted to describe an exact yield state in the stress computation procedure. Then, design sensitivity analysis of nonlinear structures, particularly elasto-perfectly-plastic structure, is developed using direct differentiation method. The accuracy of the developed sensitivity analysis was compared with the central finite difference method. Finally, on the basis of above results, design improvement for stiffened shell is suggested.

  • PDF

The Synthesis and Photocatalytic activity of Carbon Nanotube-mixed TiO2 Nanotubes

  • Park, Chun Woong;Kim, Young Do;Sekino, Tohru;Kim, Se Hoon
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.279-284
    • /
    • 2017
  • The formation mechanism and photocatalytic properties of a multiwalled carbon nanotube (MWCNT)/$TiO_2$-based nanotube (TNTs) composite are investigated. The CNT/TNT composite is synthesized via a solution chemical route. It is confirmed that this 1-D nanotube composite has a core-shell nanotubular structure, where the TNT surrounds the CNT core. The photocatalytic activity investigated based on the methylene blue degradation test is superior to that of with pure TNT. The CNTs play two important roles in enhancing the photocatalytic activity. One is to act as a template to form the core-shell structure while titanate nanosheets are converted into nanotubes. The other is to act as an electron reservoir that facilitates charge separation and electron transfer from the TNT, thus decreasing the electron-hole recombination efficiency.