• Title/Summary/Keyword: shearing surface

Search Result 187, Processing Time 0.025 seconds

Deformation Measurement of Polymer Scaffold Using Particle Image Analysis (입자 영상 해석을 이용한 고분자 지지체 변형 측정)

  • Kang, Min Je;Oh, Sang Hoon;Rhee, Kyehan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.69-75
    • /
    • 2016
  • Polydimethylsiloxane (PDMS) is used as a scaffold for cell culture. Because both the stress and strain acting on the substrate and the hemodynamic environment are important for studying mechano-transduction of cellular function, the traction force of the surface of a substrate has been measured using fluorescence images of particle distribution. In this study, deformation of the cross-sectional plane of a PDMS block was measured by correlating particle image distributions to validate the particle image strain measurement technique. Deformation was induced by a cone indentor and a shearing parallel plate. Measured deformations from particle image distributions were in agreement with the results of a computational structure analysis using the finite-element method. This study demonstrates that the particle image correlation method facilitates measurement of deformation of a polymer scaffold in the cross-sectional plane.

A Study on Measurement of Internal Defects of Pressure Vessel by Digital Shearography and Finite Element Method (전자 전단 간섭법과 유한요소법을 이용한 압력용기의 내부결함 측정에 관한 연구)

  • 강영준;강형수;채희창
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.29-37
    • /
    • 2001
  • The application of laser in pipelines was started from the base of using laser in nuclear facilities industries and power plants. Because laser can be delivered to a remote area without any difficulties, the application of laser in many industries can solve many difficulties from limitation of access in danger area and reduced the risks of workers. Therefore, we developed a new experimental technique to measure internal defects of pressure vessels with a combination of shearog-raphy and image processing technique. Conventional NDT methods have been taken relatively much time, money and manpower because of performing as the method of contact with objects to be inspected. But digital shearography is laser-based optical method which allows full-field observation of surface displacement derivatives. This method has many advantages in practical use, such as low sensitivity to environmental noise, simple optical configuration and real time mea-surement. In this paper, we find the optimum shearing magnitude with EFM and experiment and measured internal crack length of the pressure vessels at a real time and estimated the error of the results.

  • PDF

Development of Surface Modified Tencel Fabrics through the Control of Fibrillation(Part I) -Fibrillation Control Effect through Crosslinking Agent Treatment- (피브릴화 조절을 통한 다양한 감성의 텐셀소재 개발(제1보) -가교체 처리를 통한 피브릴화 조절효과-)

  • 신윤숙;손경희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.1
    • /
    • pp.144-153
    • /
    • 2001
  • The effect of crosslinking on hand of the cellulase treated Tencel fabrics was investigated. Tencel fabrics were crosslinked with DMDHEU, mechanically prefibrillated, hydrolyzed by cellulase, and treated with softener. The treated fabrics were characterized by add-on, weight loss, DP rating, WRA, strength, SEM analysis and hand measurement. As DMDHEU concentration increased, weight loss of DMDHEU/cellulase treated fabrics decreased. However, cellulase treatment decreased DP properties and strength retention. Less fibrils were observed in the cellulase treated fabrics after DMDHEU treatment than the cellulase treated ones. It was confirmed that crosslinking with DMDHEU treatment was effective to control fibrillation. At 5% of DMDHEU concentration, DMDHEU/cellulase treated fabrics showed softer, smoother and bulkier hand compared with other treated fabrics. Among mechanical properties, bending and shearing properties were decreased progressively through DMDHEU, cellulase, and softener treatment. DMDHEU treatment contributed to impart resilience, cellulase treatment to bulkiness and softener treatment to smoothness. As the treatment of DMDHEU, cellulase, and softener progressed NUMREI, FUKURAMI, and THV increased with the exception of KOSHI.

  • PDF

Effect of Cellulase Treatment on Mechanical Properties and Hand of Tencel Fabrics (효소처리에 의한 텐셀직물의 역학적 성질 및 태의 변화)

  • 손경희;신윤숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.8
    • /
    • pp.1141-1149
    • /
    • 1998
  • Tencel fabrics were treated with NaOH, mechanically prefibrillated, and hydrolyzed by cellulase. Softner was applied to improve hand of the treated Tencel fabrics after prefibrillation and cellulase treatment. Kawabata's Evaluation System for Fabrics(KES-FB) was used to evaluate effects of NaOH pretreatment, prebifrillation, and cellulase and softner treatments on fabric hand of the treated fabrics. Primary hand values of women's medium thick fabrics such as KOSHI, NUMERI, FUKURAMI, and SOFUTOSA, and total hand values were evaluation parameters. As the treatments of prefibrillation, cellulase, and softner progressed, values in bending and shearing properties decreased and softness and elasticity were imparted to the treated fabrics. Specifically, compressional linearity, compressional energy, and thickness of the treated fabrics increased by prefibrillation, providing bulkiness to the treated fabrics. Values indicating surface properties increased owing to fibrils formed by prefibrillation treatment, but removal of fibrils by cellulase treatment enhanced smoothness. As the fabrics were exposed to various treatments such as NaOH pretreatments, prefibrillation, and cellulase and softner treatments, NUMERI, FUKURAMI, SOFUTOSA, and total hand values increased with the exception of KOSHI, Consequently, the treated fabrics became softer, smoother, and more elastic. Especially, the NaOH pretreatment provided superior SOFUTOSA to Tencel fabrics.

  • PDF

CONTACT PRESSURE DISTRIBUTION OF RADIAL TIRE IN MOTION WITH CAMBER ANGLE

  • Kim, Seok-Nam;Kondo, Kyohei;Akasaka, Takashi
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.387-394
    • /
    • 2000
  • Theoretical and experimental study is conducted on the contact pressure distribution of a radial tire in motion under various camber angles. Tire construction is modelled by a spring bedded elastic ring, consisted of sidewall springs and a composite belt ring. The contact area is assumed to be a trapezoidal shape varying with camber angles and weighted load. The basic equation in a quasi-static form is derived for the deformation of a running belt with a constant velocity by the aid of Lagrange-Euler transformation. Galerkin's method and stepwise calculation are applied for solving the basic equation and the mechanical boundary condition along both sides of the contact belt part subjected to shearing forces transmitted from the sidewall spring. Experimental results on the contact pressure, measured by pressure sensors embedded in the surface of the drum tester, correspond well with the calculated ones for the test tire under various camber angles, running velocities and weighted loads. These results indicate that a buckling phenomenon of the contact belt in the widthwise direction occurs due to the effect of camber angle.

  • PDF

Influence of Joint Secondary Roughness on Roughness Parameter in Direct Shear Test (직접전단시험에서 절리면의 2차 거칠기가 거칠기 정량화 파라미터에 미치는 영향)

  • Lee, Deok-Hwan;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.89-96
    • /
    • 2014
  • Rock joint surface roughness, which is known to be one of the most important factors for defining shear strength of rock mass, has been researched in various methods. However, approaches to separate a roughness into two groups (primary and secondary) for evaluating the roughness have been rarely performed. In this study, elements of secondary roughness were eliminated through direct shear testing with tensile joint specimen and they were quantified with joint parameters. It is revealed that roughness parameters decrease with increasing the normal stress and sampling intervals, except for the case in which the normal stress is larger than 1.5 MPa. Also it is analyzed that ratio of area reduction in the opposite direction of shearing decreases with increasing the roughness parameter.

Influence of Clearance in Half-piecing of Sheet Metal (금속판재의 하프피어싱 공정에서의 틈새 영향 연구)

  • Yeon, S.M.;Lee, S.K.;Chung, W.J.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.437-441
    • /
    • 2013
  • Recently, the engraving of letters or a pattern on a product surface has received more attention especially in trying to satisfy the customer requirements. Half-piecing is a protrusion forming process that pierces only 40~50% of the material thickness. In the current study, the half-piercing technique for making clear letters by protruding sheet material was selected and studied. The influence of clearance and penetration depth was investigated by measuring the camber and extruded length of a protrusion after experiments. In addition, a numerical analysis was performed for the same working conditions and compared with experimental results. It is shown that, as the clearance increases, the camber of a protrusion increases rapidly and the extruded length decreases slightly. The deformation pattern around the cutting edge during half-piercing changes from an extrusion mode to a shearing mode as the clearance changes from minus to plus values. It is also confirmed that the experimental results show a good agreement with the numerical analyses.

Development of High Precision Plate Holder in Automotive Seat Recliner by Mechanical Press(I) : Application of FCF Method (기계식 프레스에 의한 자동차 시트 리클라이너의 고정밀 플레이트 홀더 개발(I) : FCF 공법 적용)

  • Kim, Byung-Min;Choi, Hong-Seok;Chang, Myung-Jin;Bae, Jae-Ho;Lee, Seon-Bong;Ko, Dae-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.55-63
    • /
    • 2008
  • Fine blanking is a process of press shearing which makes it possible to produce the thick sheet metal of the finished surface and the close dimensional accuracy over the whole material thickness in the single blanking operation. In this paper, a plate holder of automotive seat recliner is manufactured by FCF(Flow Control Forming) method using the conventional mechanical press instead of the fine blanking press. Main processes for manufacturing of the plate holder by FCF method are embossing, half blanking and trimming processes. Optimal clearance, stripper force and counter force to increase the dimensional accuracy of the plate holder have been investigated by FE-analysis. As a result of FE-analysis, the clearance for both embossing and half blanking processes was -2%t and the forces of stripper and counter were 25ton and 15ton, respectively. After manufacturing the plate holder by FCF method, the measured dimensional characteristics have been compared with the required specifications as the final product. Although the dimensional accuracy of the plate holder manufactured by FCF method was a little inferior to that by fine blanking process, it was satisfactory in a general sense.

Effect of Knit Structure on the Hand Properties of Weft Knitted Fabrics -Focusing on Objective Hand Evaluation- (편성조직이 위편성물의 태에 미치는 영향 -싱글니트의 객관적 태평가를 중심으로-)

  • 조혜진;이원자;김영주;서정권
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.8
    • /
    • pp.1153-1164
    • /
    • 2004
  • The purpose of this study was to knitted nine kinds of single knit and examined mechanical properties and hand to provide the fact that knit, tuck and miss stitch applied to various structure have an effect on hand of weft knitted fabrics. It was good to use tuck stitch rather than miss stitch to increase elasticity of knitted fabrics. As tuck stitch and miss stitch were double or triple overlaps, tensile resilence(RT) decreased by increase of friction contacted among stitch. As cross tuck stitch and cross miss stitch were knitted double or triple, bending rigidity(B), hysteresis of bending moment(2HB) and shearing(G) properties increased by jamming of stitch. As tuck stitch and miss stitch were overlap, thickness increased and they became thicker than miss stitch. Also, as they became thicker by these tuck stitch and miss stitch, compressional energy(WC) increased. It appeared that coefficient of friction(MIU) of cross tuck stitch was larger than coefficient of cross miss stitch. Mean deviation of surface roughness(SMD) had a tendency to be larger as tuck stitch and miss stitch increased. As cross tuck stitch and cross miss stitch were overlaps double or triple, KOSHI and FUKURAMI increased, total hand value(TIV) and NUMERI appeared high in double cross tuck stitch and double cross miss stitch.

Analysis of Physical Performance, Hygiene and Safety of Silicone-Laminated Stretch Material (실리콘이 라미네이팅된 신축성 소재의 위생 및 안전성과 역학적 성능)

  • Kwon, Myoung-Sook;Jung, Gi-Soo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.1 s.160
    • /
    • pp.77-84
    • /
    • 2007
  • The purpose of this study was to investigate and to compare the performances of silicone laminated materials sold for swimming cap in market, to get the basic data for product development. We selected 4 specimens and tested their air permeability, waterproofness and breathability. We also tested the physical and mechanical properties of the specimens using KES system. Silicone-laminated material was not bursted on high hydraulic pressure since silicone membrane gave waterproofness while PU/Polyester substrate gave elasticity. It didn't have air permeability and breathability at all. Any toxic materials such as Formaldehyde, Deldrin, PCP, Amin, TDBPP were not detected in silicone-laminated material and other materials. Silicone-laminated material had higher stretchability with the low force but it had lower elastic recovery and shape stability comparing to PU laminated material. It had lower flexibility than PU laminated material. It had lower unrecoverable amount in shearing direction. Friction coefficient was higher in silicone-laminated material than PU laminated material due to its surface stickiness. It was compressed easily and its compression resiliency was higher with compared to PU laminated material.