• Title/Summary/Keyword: shear-wave velocity

Search Result 477, Processing Time 0.029 seconds

Determination of shear wave velocity profiles in soil deposit from seismic piezo-cone penetration test (탄성파 피에조콘 관입 시험을 통한 국내 퇴적 지반의 전단파 속도 결정)

  • Sun Chung Guk;Jung Gyungja;Jung Jong Hong;Kim Hong-Jong;Cho Sung-Min
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.125-153
    • /
    • 2005
  • It has been widely known that the seismic piezo-cone penetration test (SCPTU) is one of the most useful techniques for investigating the geotechnical characteristics including dynamic soil properties. As the practical applications in Korea, SCPTU was carried out at two sites in Busan and four sites in Incheon, which are mainly composed of alluvial or marine soil deposits. From the SCPTU waveform data obtained from the testing sites, the first arrival times of shear waves were and the corresponding time differences with depth were determined using the cross-over method, and the shear wave velocity profiles (VS) were derived based on the refracted ray path method based on Snell's law and similar to the trend of cone tip resistance (qt) profiles. In Incheon area, the testing depths of SCPTU were deeper than those of conventional down-hole seismic tests. Moreover, for the application of the conventional CPTU to earthquake engineering practices, the correlations between VS and CPTU data were deduced based on the SCPTU results. For the empirical evaluation of VS for all soils together with clays and sands which are classified unambiguously in this study by the soil behavior type classification Index (IC), the authors suggested the VS-CPTU data correlations expressed as a function of four parameters, qt, fs, $\sigma$, v0 and Bq, determined by multiple statistical regression modeling. Despite the incompatible strain levels of the down-hole seismic test during SCPTU and the conventional CPTU, it is shown that the VS-CPTU data correlations for all soils clays and sands suggested in this study is applicable to the preliminary estimation of VS for the Korean deposits and is more reliable than the previous correlations proposed by other researchers.

  • PDF

Assessment of Liquefaction Potential Using Correlation between Shear Wave Velocity and Normalized LPI on Urban Areas of Seoul and Gyeongju (정규화LPI와 전단파 속도의 상관관계를 활용한 서울과 경주 지역 액상화 위험도 평가)

  • Song, Young Woo;Chung, Choong Ki;Park, Ka Hyun;Kim, Min Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.357-367
    • /
    • 2018
  • Recent earthquakes in Gyeongju and Pohang have raised interest in liquefaction in South Korea. Liquefaction, which is a phenomenon that excessive pore pressure is generated and the shear strength of soil is decreased by repeated loads such as earthquakes, causes severe problems such as ground subsidence and overturning of structures. Therefore, it is necessary to identify and prepare for the possibility of liquefaction in advance. In general, the possibility of liquefaction is quantitatively assessed using the Liquefaction Potential Index (LPI), but it takes a lot of time and effort for performing site response analysis which is essential for the liquefaction evaluation. In this study, a simple method to evaluate the liquefaction potential without executing the site response analysis in a downtown area with a lot of borehole data was proposed. In this simple method, the correlation between the average shear wave velocity of the target location ground and the LPI divided by thickness of liquefiable layer was established. And the applicable correlation equation for various rock outcrop accelerations were derived. Using the 104 boreholes information in Seoul, the correlation equation between LPI and the shear wave velocity (ground water level: 0m, 1m, 2m, 3m) is obtained and the possibility of liquefaction occurrence in Seoul and Gyeongju is evaluated. The applicability of the proposed simple method was verified by comparing the LPI values calculated from the correlation equation and the LPI values derived using the existing site response analysis. Finally, the distribution map of LPI calculated from the correlation was drawn using Kriging, a geostatistical technique.

Synthetic Application of Seismic Piezo-cone Penetration Test for Evaluating Shear Wave Velocity in Korean Soil Deposits (국내 퇴적 지반의 전단파 속도 평가를 위한 탄성파 피에조콘 관입 시험의 종합적 활용)

  • Sun, Chang-Guk;Kim, Hong-Jong;Jung, Jong-Hong;Jung, Gyung-Ja
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.207-224
    • /
    • 2006
  • It has been widely known that the seismic piezo-cone penetration test (SCPTu) is one of the most useful techniques for investigating the geotechnical characteristics such as static and dynamic soil properties. As practical applications in Korea, SCPTu was carried out at two sites in Busan and four sites in Incheon, which are mainly composed of alluvial or marine soil deposits. From the SCPTu waveform data obtained from the testing sites, the first arrival times of shear waves and the corresponding time differences with depth were determined using the cross-over method, and the shear wave velocity $(V_S)$ profiles with depth were derived based on the refracted ray path method based on Snell's law. Comparing the determined $V_S$ profile with the cone tip resistance $(q_t)$ profile, both trends of profiles with depth were similar. For the application of the conventional CPTu to earthquake engineering practices, the correlations between $V_S$ and CPTu data were deduced based on the SCPTu results. For the empirical evaluation of $V_S$ for all soils together with clays and sands which are classified unambiguously in this study by the soil behavior type classification index $(I_C)$, the authors suggested the $V_S-CPTu$ data correlations expressed as a function of four parameters, $q_t,\;f_s,\;\sigma'_{v0}$ and $B_q$, determined by multiple statistical regression modeling. Despite the incompatible strain levels of the downhole seismic test during SCPTu and the conventional CPTu, it is shown that the $V_S-CPTu$ data correlations for all soils, clays and sands suggested in this study is applicable to the preliminary estimation of $V_S$ for the soil deposits at a part in Korea and is more reliable than the previous correlations proposed by other researchers.

Vibration mode decomposition response analysis of large floating roof tank isolation considering swing effect

  • Sun, Jiangang;Cui, Lifu;Li, Xiang;Wang, Zhen;Liu, Weibing;Lv, Yuan
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.411-417
    • /
    • 2018
  • To solve the seismic response problem of a vertical floating roof tank with base isolation, the floating roof is assumed to experience homogeneous rigid circular plate vibration, where the wave height of the vibration is linearly distributed along the radius, starting from the theory of fluid velocity potential; the potential function of the liquid movement and the corresponding theoretical expression of the base shear, overturning the moment, are then established. According to the equivalent principle of the shear and moment, a simplified mechanical model of a base isolation tank with a swinging effect is established, along with a motion equation of a vertical storage tank isolation system that considers the swinging effect based on the energy principle. At the same time, taking a 150,000 m 3 large-scale storage tank as an example, a numerical analysis of the dampening effect was conducted using a vibration mode decomposition response spectrum method, and a comparative analysis with a simplified mechanical model with no swinging effect was applied.

Analytic solution of Timoshenko beam excited by real seismic support motions

  • Kim, Yong-Woo
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.247-258
    • /
    • 2017
  • Beam-like structures such as bridge, high building and tower, pipes, flexible connecting rods and some robotic manipulators are often excited by support motions. These structures are important in machines and structures. So, this study proposes an analytic method to accurately predict the dynamic behaviors of the structures during support motions or an earthquake. Using Timoshenko beam theory which is valid even for non-slender beams and for high-frequency responses, the analytic responses of fixed-fixed beams subjected to a real seismic motions at supports are illustrated to show the principled approach to the proposed method. The responses of a slender beam obtained by using Timoshenko beam theory are compared with the solutions based on Euler-Bernoulli beam theory to validate the correctness of the proposed method. The dynamic analysis for the fixed-fixed beam subjected to support motions gives useful information to develop an understanding of the structural behavior of the beam. The bending moment and the shear force of a slender beam are governed by dynamic components while those of a stocky beam are governed by static components. Especially, the maximal magnitudes of the bending moment and the shear force of the thick beam are proportional to the difference of support displacements and they are influenced by the seismic wave velocity.

Proposed New Evaluation Method of the Site Coefficients Considering the Effects of the Structure-Soil Interaction (구조물-지반 상호작용 영향을 고려한 새로운 지반계수 평가방법에 대한 제안)

  • Kim, Yong-Seok
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.327-336
    • /
    • 2006
  • Site coefficients in IBC and KBC codes have some limits to predict the rational seismic responses of a structure, because they consider only the effect of the soil amplification without the effects of the structure-soil interaction. In this study, upper and lower limits of site coefficients are estimated through the pseudo 3-D elastic seismic response analyses of structures built on linear or nonlinear soil layers considering the structure-soil interaction effects. Soil characteristics of site classes of A, B, and C were assumed to be linear, and those of site classes of D and E were done to be nonlinear and the Ramberg-Osgood model was used to evaluate shear modulus and damping ratio of a soil layer depending on the shear wave velocity of a soil layer. Seismic analyses were performed with 12 weak or moderate earthquake records, scaled the peak acceleration to 0.1g or 0.2g and deconvoluted as earthquake records at the bedrock 30m beneath the outcrop. With the study results of the elastic seismic response analyses of structures, new standard response spectrum and upper and lower limits of the site coefficients of Fa and Fv at the short period range and the period of 1 second are suggested Including the structure-soil interaction effects.

  • PDF

Bearing capacity of a Flysch rock mass from the characterization of the laboratory physical properties and the Osterberg test

  • Hernan Patino;Ruben A. Galindo
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.573-594
    • /
    • 2024
  • This article presents a research study, with both laboratory and field tests, of a deep foundation in a markedly anisotropic medium. Particularly it has focused on the evaluation of the behavior of a pile, one meter in diameter, embedded in a rocky environment with difficult conditions, in the Flysch of the Spanish city of San Sebastián. To carry out the research, the site of a bridge over the Urumea River was chosen, which was supported by pre-excavated reinforced concrete piles. 4 borings were carried out, by the rotation and washing method, with continuous sampling and combined with flexible dilatometer tests. In the field, an Osterberg load test (O-cell) was performed, while in the laboratory, determinations of natural moisture, natural unit weight, uniaxial compressive strength (UCS), point load strength (PLS), compressive wave propagation velocity (Vc) and also triaxial and direct shear tests were carried out. The research results indicate the following: a) the empirical functions that correlate the UCS with the PLS are not always linear; b) for the studied Flysch it is possible to obtain empirical functions that correlate the UCS with the PLS and with the Vc; c) the bearing capacity of the studied Flysch is much greater than if it is evaluated by different load capacity theories; d) it is possible to propose an empirical function that allows evaluating the mobilized shear strength (τm), as a function of the UCS and the displacement relative of the pile (δr).

Geophysical Study on the Ultramafic Rocks of Chungnam Province, Korea: Characteristics of Seismic Velocity (충남지역 초염기성 암체의 지구물리학적 연구: 탄성파 속도 특성)

  • Suh, Man-Cheol;Woo, Young-Kyun;Song, Suck-Hwan;Tianyao, Hao
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.349-358
    • /
    • 2000
  • Compressional and shear wave velocities (Vp and Vs) and densities have been measured for serpentinite, amphibolite, amphibole and biotite schist, and gneiss from western part of Chungnam Province at room temperature. Ranges of the density are 2.6${\sim}$2.86g/cm$^3$ for serpentinite, 2.25${\sim}$2.81g/cm$^3$ for talc, and 2.74${\sim}$3.07g/cm$^3$ for metamorphic rocks. Of these rocks, talc shows wider ranges than serpentinite and amphibolites due to its metamorphic process from serpentinite. Values of Vp and Vs are 5719${\sim}$6062m/s and 2898${\sim}$3351m/s for serpentinites, 4019${\sim}$5478m/s and 2241/${\sim}$2976m/s for talc, 5375${\sim}$6372m/s and 3042${\sim}$3625m/s for amphibolite, 5290${\sim}$5499m/s and 2968${\sim}$3137m/s for schist, and 4788m/s and 2804m/s for gneiss, respectively. Velocity of P wave increases 1.47 times faster than S wave with increase of density. The results of seismic velocity measurement show anisotropy, higher velocity across than along the schistocity of rocks, especially in metamorphic rocks. This fact indicates that there were regional metamorphism related with tectonic forces. Values of seismic velocity increase with increasing pressure from 20 MPa to 70 MPa, especially in metamorphic rocks. Overall recalculated Vp and Vs values suggest that the serpentinite indicates for upper mantle in the respects of seismic characteristics, in spite of high degree of serpentinization. In addition, those of the amphibolite do for low crust, and gneiss and schist for upper crust.

  • PDF

Whipping analysis of hull girders considering slamming impact loads (슬래밍 충격하중을 고려한 선체 휘핑 해석)

  • Seong-Whan Park;Keun-Bae Lee;Chae-Whan Rim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.99-109
    • /
    • 2000
  • Elastic dynamic responses analysis program for ship hulls considering slamming impact loads due to the voyage in large amplitude waves is developed. Ship hull structures are modeled by a thin-walled beam model in order to consider effects of shear deformation. The momentum slamming theory is used to derive nonlinear hydrodynamic forces considering intersection between wave particles and ship section. For the validation of the developed computer program, motions of a V-shaped simple section model and S-175 standard container model are calculated and analyzed. In each numerical example, time histories of relative displacement, velocity and vertical bending moment of a ship section are derived, considering the effect of slamming impacts in various wave conditions.ures near the free surface as well as the wake of the hydrofoil.

  • PDF

A Study on the Applicability of Numerical Analysis for the SASW Method (SASW 기법에 대한 수치해석 적용성 연구)

  • 김동수;윤종구;이병식;박형춘
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.1
    • /
    • pp.67-76
    • /
    • 2001
  • 현장지반의 최대전단탄성계수를 신속하고 합리적으로 구할 수 있는 표면파기법에 대해 유한요소법을 이용하여 시뮬레이션 할 경우 적용할 수 있는 효율적인 해석조건에 대한 연구를 수행하였다. 본 연구결과 파의 전파형상을 효율적으로 묘사하기 위하여는 관심 있는 최소 파장에 대한 유한요소 크기의 비가 매우 중요한 요소임을 확인하였고, 데이터의 측정시간간격도 중요한 요소임을 확인하였다. 또한, 유한요소해석을 이용하여 얻은 반무한체 시스템과 2층 시스템의 분산곡선과 이론적 분산곡선이 비교적 잘 일치함을 볼 수 있었다. 따라서, 유한요소해석을 적절히 적용하는 경우에 표면파기법을 효과적으로 시뮬레이션 할 수 없음을 확인하였다. 현장지반의 최대전단탄성계수를 신속하고 합리적으로 구할 수 있는 표면파기법에 대해 유한요소법을 이용하여 시뮬레이션 할 경우 적용할 수 있는 효율적인 해석조건에 대한 연구를 수행하였다. 본 연구결과 파의 전파형상을 효율적으로 묘사하기 위하여는 관심 있는 최소 파장에 대한 유한요소 크기의 비가 매우 중요한 요소임을 확인하였고, 데이터의 측정시간간격도 중요한 요소임을 확인하였다. 또한, 유한요소해석을 이용하여 얻은 반무한체 시스템과 2층 시스템의 분산곡선과 이론적 분산곡선이 비교적 잘 일치함을 볼 수 있었다. 따라서, 유한요소해석을 적절히 적용하는 경우에 표면파기법을 효과적으로 시뮬레이션 할 수 없음을 확인하였다.

  • PDF