• Title/Summary/Keyword: shear-wave velocity

Search Result 477, Processing Time 0.029 seconds

Dispersion Characteristics of Spilled Oil by Waves and Velocity Shear (파랑과 속도전단에 의한 유출유의 분산 특성)

  • Seol Dong-Guan;Ryu Cheong-Ro;Kim Jong-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.2
    • /
    • pp.18-26
    • /
    • 1998
  • The major interest of this paper is how the spilled oil over the sea is dispersed into water column especially under the shear and turbulence such as breaking wave. Two hydraulic experiments were conducted to investigate the oil stick break-up characteristics into small and large droplets under the variation of velocity shear and breaking waves. From the experiments in the shear generator and the wave flume, small droplets which have diameters of tens to hundreds of micrometers were uniformly distributed throughout the whole control volume as time goes by. In addition, it can be seen that the weathered spilled oil has a different break-up mechanism from fresh spilled oil.

  • PDF

A Study on the Stress Wave Propagation of Composite Laminate Subjected to Low-Velocity Impact (저속 충격을 받는 적층 복합재의 응력파 전파에 관한 연구)

  • 안국찬;김문생;김규남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.9-19
    • /
    • 1989
  • The impact stress and wave propagation of graphite/epoxy and glass/epoxy laminates subjected to the transverse low-velocity impact of steel balls are investigated theoretically. A plate finite element model based on Whitney and Pagano's theory for the analysis of heterogeneous and anisotropic plates taking into account of the transverse shear deformation is used for the theoretical investigation. This model is in conjuction with static contact laws. The basic element is a four-node quadrilateral with the five degrees-of-freedom per node. The reduced integration technique is used for shear locking associated with low-order function in application to thin plates. These two materials are composed of [0.deg./45.deg./0.deg./-45.deg./0.deg.]$_{2S}$ and [90.deg./45.deg./90.deg./-45.deg./90.deg.]$_{2S}$ stacking sequences and have clamped-clamped boundary conditions. Finally, the present results are compared with an existing solution and wave propagation theory and then impact stress and wave propagation phenomena are investigated.gated.

Determinations of P, S-Wave Velocities and Pore Water Pressure Buildup with B-value for Nearly Saturated Sands (비배수 조건에서 반복하중을 받는 사질토의 B값(간극수압계수)에 따른 P파, S파 속도 및 간극수압 측정)

  • Lee, Sei-Hyun;Choo, Yun-Wook;Youn, Jun-Ung;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.71-83
    • /
    • 2007
  • Liquefaction resistance depends strongly upon the degree of saturation, which is expressed in terms of the pore pressure coefficient, B. The B-value has been widely used to quantify the state of saturation of laboratory samples. However, it is practically impossible to determine in situ state of saturation by using the B-value. So, P-wave velocity can be alternatively used as a convenient index for evaluating the in situ state of saturation. In this paper, the Stokoe type torsional shear (TS) testing system was modified to saturate the specimen, with which it is also possible to measure P ($V_p$), S-wave velocity ($V_s$) and the excess pore water pressure buildup In order to examine the effect of B-value for nearly saturated sands. A series of the tests were carried out at 3 relative densities (40%, 50% and 75%) and various B-values using Toyoura sand. Based on the test results, the variations of $V_p\;and\;V_s$ with B-value were analyzed and compared with a existing theoretically derived formula. The normalized pore water pressure, $du/{\sigma}{_0}'$ and cyclic threshold shear strain, ${\gamma}^c_{th}$ with B-value were also analyzed. Additionally the test results related to pore water pressure were analyzed by $V_p$ to apply to the field seismic analysis.

Establishment and Verification of SPT-uphole method for Evaluating Shearwave Velocity of a site (지반의 전단파 속도 도출을 위한 SPT 업홀 기법의 확립 및 검증)

  • Bang, Eun-Seok;Kim, Jung-Ho;Seo, Won-Seok;Kim, Dong-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.142-152
    • /
    • 2008
  • SPT-Uphole method was introduced for the evaluation of near subsurface shear wave velocity (Vs) profile. In SPT-Uphole method, SPT (Standard Penetration Test) which is common in geotechnical site investigation was used as a source and several surface geophones in line were used as receivers. 1D shearwave velocity profile can be obtained in the manner of downhole method, Vs distribution map which is the triangular shape around the boring point can be developed by tomography inversion. To obtain the exact travel time information of shear wave component, a procedure using the magnitude summation of vertical and horizontal components was used based on the evaluation of particle motion at the surface. It was verified that proposed method could give reliable Vs distribution map through the numerical study using the FEM (Finite Element Method) model. Finally, SPT-Uphole method was performed and the feasibility of proposed method was verified in the field.

  • PDF

Evaluation of 2D Shear Wave Velocity Imaging of Subground Using HWAW Method (HWAW 기법을 이용한 지반의 2차원 전단파 속도 평가)

  • Kim, Jong-Tae;Park, Hyung-Choon;Bang, Eun-Seok;Park, Heon-Joon;Kim, Dong-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.105-114
    • /
    • 2007
  • Two-dimensional imaging of $V_s$ profile becomes more important in Korea because of the large horizontal variation of soil stiffness. To obtain a shear-wave velocity profile in geotechnical practice, various seismic nondestructive investigation methods are being frequently used. In this study, harmonic wavelet analysis of wave (HWAW) method is applied to the determination of $V_s$ profile to overcome some of weaknesses in the existing surface wave methods. HWAW method which is based on time-frequency analysis using harmonic wavelet transform has been developed to determine phase and group velocities of waves. Field testing of this method is relatively simple and fast because one experimental setup which consists of one pair of receivers is needed to determine $V_s$ profile of site. The proposed method uses the signal portion of the maximum local signal/noise ratio to evaluate the phase velocity to minimize the effects of noise, and uses single array inversion which considers receiver locations. Field tests were performed in 2 sites in order to evaluate accuracy of test method and estimate the applicability of 2-D imaging by HWAW method. Through field applications and comparison with other test results, the good accuracy and applicability of the proposed method were verified.

Evaluation of the Status of Ballast on the Bridge Expansion f)int using HWAW method (HWAW방법을 이용한 고속철도 교량 상판 신축 이음부 도상 자갈의 이완상태 및 이완범위 평가)

  • Park, Hyung-Choon;Park, Jun-O;Jin, Nam-Hee;Noh, Hee-Kwan;Bae, Hyun-Jung
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.997-1002
    • /
    • 2009
  • The local loosening of ballast supporting railway tract cause a differential vertical tract settlement. In the bridge, the temperature change make bridge deck to contract and expand, and this movement cause local loosening of ballast on the bridge expansion joint. Therefore, the evaluation of the status of ballast on the bridge expansion joint is important for the track maintenance of the high-speed railway. In this paper, hwaw method was applied to evaluate the status of ballast on the bridge expansion joint. HWAW method is non-destructive test to evaluate 2-D shear wave velocity map along the railway. Shear wave velocity is directly related with status of ballast. In this research, hwaw method was applied two different types of bridges and determine the degree and the range of the ballast loosening caused by movement of the bridge expansion joint.

  • PDF

MASW FOR QUANTIFYING CHANGE IN SHEAR WAVE VELOCITY AFTER DEEP DYNAMIC COMPACTION AT A SOIL SITE

  • ChoonB.Park;RichardD.Miller
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.4
    • /
    • pp.245-259
    • /
    • 2003
  • Two multichannel analysis of surface wave (MASW) surveys were conducted over a soil site in Tacoma Water's Green River Facility, Washington, where construction of a chemical treatment facility had been planned. The purpose of the surveys was to compare soil stiffness characterized by shear-velocity (Vs) distribution before and after Deep Dynamic Compaction (DDC) operation that was designed to improve the soil stiffness. Site soil consisted of very heterogeneous gravel and cobbles in a sand-and-silt matrix. Results from each survey are represented by two 2-D Vs maps delineating Vs variation of soil below the surveyed lines. One map was constructed from those dispersion curves that were analyzed with a significant amount of subjective judgment involved, whereas the other map was constructed from those dispersion curves analyzed with as much objective information as possible. Comparison of 2-D Vs maps indicates that Vs actually decreased after the DDC operations, possibly due to the loss (or reduction) of cohesive bonding between soil particles caused by the compaction operations.

  • PDF

Wave propagation in an FG circular plate in thermal environment

  • Gui-Lin, She;Yin-Ping, Li
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.615-622
    • /
    • 2022
  • In this paper, considering the temperature dependence of material physical parameters as well as the effects of thermal effect and shear deformation, we have conducted an in-depth study on the wave propagation of functionally graded (FG) materials circular plate in thermal environment based on the physical neutral surface concept. The dynamic governing equations of functionally graded plates are established, and the dispersion relation of wave propagation is derived. The influence of different temperature fields on the propagation characteristics of flexural waves in FG circular plates is discussed in detail. It can be found that the phase velocity and group velocity of wave propagation in the plate decrease with the increase of temperature.

Influence of Anisotropy of Microcrack Distribution in Pocheon Granite Rock on Elastic Resonance Characteristics (포천 화강암의 미세균열 분포 이방성이 탄성파 공진특성에 미치는 영향)

  • Kang, Tae-Ho;Kim, Kwang Yeom;Park, Deok-Won;Shin, Hyu-Soung
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.363-372
    • /
    • 2014
  • Granite rock is reported to have three orthogonal anistoropic planes i.e., rift, grain induced by microcrack characteristics and mineral arrangement. We investigated the influence of thus fabric anisotropy in granite on elastic wave properties using free-free resonance test to obtain unconstrained compression wave velocity, shear velocity, Poisson ratio and damping ratio. As a result, Rod wave velocity is more dependent on anisotropy of granite due to microcrack distribution than shear wave velocity. In addition, anisotropy of Poisson ratio and damping ratio is also observed with respect to three anisotropic planes.

Estimating the shear velocity profile of Quaternary silts using microtremor array (SPAC) measurements (Microtremor 배열 (SPAC) 측정을 이용한 제4기 실트층의 S파 속도구조 추정)

  • Roberts James;Asten Michael
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • We have used the microtremor method, with arrays of up to 96 m diameter, to carry out non-invasive estimation of shear-wave velocity profiles to a depth of 30 to 50 m in unconsolidated Quaternary Yarra Delta sediments. Two silt units (Coode Island Silt, and Fishermans Bend Silt) dominate our interpretation; the method yields shear velocities for these units with precision of $5\%$, and differentiates between the former, softer unit ($V_s$=130 m/sec) and the latter, firmer unit ($V_s$=235 m/sec). Below these silts, the method resolves a firm unit correlating with known gravels ($V_s$ 500 to 650 m/sec). Using surface traverses with the single-station H/V spectral ratio method, we show that the variation in thickness of the softer silt can be mapped rapidly but only qualitatively. The complexity of the geological section requires that array methods be used when quantitative shear-wave velocity profiles are desired.