• Title/Summary/Keyword: shear-stress

Search Result 3,969, Processing Time 0.035 seconds

Braking Distance Estimation using Frictional Energy Rate (마찰에너지율을 이용한 타이어 제동거리 예측)

  • Jeon, Do-Hyung;Choi, Joo-Hyung;Cho, Jin-Rae;Kim, Gi-Jeon;Woo, Jong-Shik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.519-524
    • /
    • 2004
  • This study is concerned with the braking distance estimation using frictional energy rate. First, steady state rolling analysis is performed, and using this result, the braking distance is estimated. Dynamic rolling analysis during entire braking time period is impratical, so that this study divides the vehicle velocity by 10km/h to reduce the analysis time. The multiplication of the slip rate and the shear stress provides the frictional energy rate. Using frictional energy rate, total braking distance is estimated, In addition, ABS(Anti-lock Brake System) is considered, and two type of slip ratios are compared, One is 15% slip ratio for the ABS condition, and the other is 100% slip ratio which leads lo the almost same braking distance as the elementary kinematic theory. A slip ratio is controlled by angular velocity in ABAQUS/Explicit, A 15% slip ratio gives the real vehicle's braking distance when the frictional energy occurred al disk pad is included. Disk pad's frictional energy rate is calculated by the theoretical approach.

  • PDF

Large-eddy Simulation of Transient Turbulent Flow in a Pipe (관 내 과도 난류유동에 대한 대형와 모사)

  • Jung, Seo-Yoon;Chung, Yong-Mann M.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.720-727
    • /
    • 2008
  • Time delay effects on near-wall turbulent structures are investigated by performing a large-eddy simulation of a transient turbulent flow in a pipe. To elucidate the time delay effects on the near-wall turbulence, we selected the dimensionless acceleration parameter which was used in the previous study. Various turbulent statistics revealed the distinctive features of the delay. It was shown that the dynamic Smagorinsky model is valid to capture the alterations of the turbulence physics well. A dimensionless time for the responses of the flow quantities was introduced to give the detailed information on the delay of the nearwall turbulence. The conditionally-averaged flow fields associated with Reynolds shear stress producing events show that sweep and ejections are closely related to the delays of the turbulence production and the turbulence propagation toward the pipe center. The present study suggested that the enhanced anisotropy of the turbulence in the initial and transient stages would be a challenging problem to standard turbulence models.

Numerical Simulation of Flow and Heat Transfer in Cooling Channel with a Staggered V-shaped Rib (엇갈린 V-형 리브가 부착된 냉각유로에서의 열유동 수치해석)

  • Myong, Hyon-Kook;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2448-2453
    • /
    • 2008
  • The present study numerically investigates the flow and heat transfer characteristics of rib-induced secondary flow in a cooling channel with staggered V-shaped ribs, extruded on both walls. The rib-height-to-hydraulic diameter ration (h/$D_h$) is 0.17; the rib pitch-to-height ratio (p/h) equals 2.8; the Reynolds number is 50,000. Shear stress transport (SST) turbulence model is used as a turbulence closure. The present results are compared with those for a continuous V-shaped rib. Computational results show that, for average heat transfer rate the staggered V-shaped rib gives about 2.5 times higher values than the continuous V-shaped rib, while, for the streamwise pressure drop the former gives about 5 times higher values than the latter. Consequently, for the thermal performances, based on the equal pumping power condition, the staggered one gives about 2 times higher values than the continuous one. Also, for the staggered V-shaped rib, complex secondary flow patterns are generated in the duct due to the snaking flow in the streamwise direction, and more uniform heat transfer distributions are obtained.

  • PDF

The Absorbed Energy Characteristics of Gr/E Composite Tubes under Axial Collapse Load (축 압궤하중을 받는 Gr/E 복합재 튜브의 에너지 흡수특성)

  • 양현수;김영남;최흥환
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.189-197
    • /
    • 2002
  • Composites have wide applications in aerospace vehicles and automobiles because of the inherent flexibility in their design lot improved material properties. Composite tubes in particular, are potential candidates for their use as energy absorbing elements in crashworthiness applications due to their high specific energy absorbing capacity and the stroke efficiency. Their failure mechanism however is highly complicated and rather difficult to analyze. This includes fracture in fibers, in the matrix and in the fiber-matrix interface in tension, compression and shear. The purpose of this study is to investigate the energy absorption characteristics of Gr/E(Graphite/Epoxy) tubes on static and impact tests. The collapse characteristics and energy absorption of a variety of tubes have been examined. Changes in the lay-up which increased the modulus increased the energy absorption of the tubes. Based on the test results, the following remarks can be made: Among CA15, CA00 and CA90 curves the CA90 tube exhibits the highest crush load throughout the whole crush process, and max load increases as interlaminar number increase. Among all the tubes type CC90 has the largest specific crushing stress of 52.60 kJ/kg which is much larger than other tubes.

A Study on Thermoplastic Elastomer Blend Using Waste Rubber Powder(I): Screw Configurations, Morphologies and Mechanical Properties (폐고무 분말을 이용한 TPE 블렌드에 관한 연구(I) : 스크류 조합, 모폴로지, 기계적 물성)

  • Lee, Sung-Hyo;Hwang, Sung-Hyuk;Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.36 no.2
    • /
    • pp.86-93
    • /
    • 2001
  • For solving the environmental problem of the waste EPDM and for new TPE blend materials, we developed a new kind of TPE material using a co-rotating twin screw extruder. To improve the mechanical properties of TPE material such as tensile strength, elongation at break, and modulus of the blend, PP and waste EPDM powder were blended with different screw configurations. The mechanical properties of the blends and morphology of the TPE were investigated. As the number of kneading disc and left-handed screw element increased, dynamic vulcanization of the material was increased because the shear stress and residence time of blends increased.

  • PDF

Loss of strength in asbestos-cement water pipes due to leaching

  • Gil, Lluis;Perez, Marco A.;Bernat, Ernest;Cruz, Juan J.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.655-663
    • /
    • 2011
  • Asbestos-cement is a material with valuable strength and durability. It was extensively used for water distribution pipes across the world from the 1950s until the early 1980s. The network of pipes in this case study dates from the 1970s, and after more than 30 to 40 years of service, some pipes have been found to break under common service pressure with no apparent reason. A set of mechanical tests was performed including bending, compression, pressure and crushing tests. Microscopy analysis was also used to understand the material behaviour. Tests showed that there was a clear loss of strength in the pipes and that the safety factor was under the established threshold in most of the specimens. Microscopy results showed morphological damage to the pipes. The loss of strength was attributed to a leaching effect. Leaching damages the cement matrix and reduces the frictional interfacial shear stress.

CFD simulations of the fluid flow behavior in a spacer-filled membrane module

  • Jun, Chen L.;Xiang, Jia Y.;Dong, Hu Y.
    • Membrane and Water Treatment
    • /
    • v.6 no.6
    • /
    • pp.513-524
    • /
    • 2015
  • In this study, the effects of the angles of spacer filaments and the different feed Reynolds number on the fluid flow behavior have been investigated. Three-dimensional computational fluid dynamics (CFD) study is carried out for fluid flow through rectangular channels within different angles ($30^{\circ}$, $40^{\circ}$, $50^{\circ}$, $60^{\circ}$, $70^{\circ}$, $80^{\circ}$, $90^{\circ}$, $100^{\circ}$, $110^{\circ}$, $120^{\circ}$, respectively) between two filaments of spacer for membrane modules. The results show that the feed Reynolds number and the angles of spacer filaments have an important influence on pressure drop. While the feed Reynolds number is fixed, the optimal angle of spacer should be between $80^{\circ}$ to $90^{\circ}$, because the pressure drop is not only relatively small, but also high flow rate region expanded significantly with the increase of the angles between $80^{\circ}$ to $90^{\circ}$.The Contours of velocities and change of the average shear stress with the different angle of spacer filaments confirm the conclusion.

Effects of Air Injections on the Resistance Reduction of a Semi-Planing Hull

  • Kim, Gyeong-Hwan;Kim, Hyo-chul
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.44-56
    • /
    • 1996
  • The effects of the air on the reductions in resistance when supplied under the bottom of a semi-planing ship with a step are investigated in the present study. A 1.275m long FRP model is constructed and the pressure and viscous tangential stresses over the planing surface of the hull with and without air supply are measured through measuring holes carefully selected at the towing tank of Seoul National University. Locations of holes most suitable for air injection are surveyed in front of the planing surface of the model with careful examinations of the limiting streamlines and pressure distributions measured without air supply. At those locations, found to be just front of the step, air has been supplied into a wake region to form an air filled cavity of fixed type. Flow rates and pressure of the supplied air as well as the local pressure and shear stress distributions on the hull surface are measured to understand the physics involved as well as to determine the conditions most effective in resistance reduction at the design speed. It has been found that total resistance of the stepped semi-planing hull can be considerably reduced if an air cavity generated by an adequate air injection at the bottom of the hull near the step. After the cavity optimized at the given speed, air bubbles also have been generated right behind the point where dividing streamlines re-attach to further reduce the frictional resistance but found to be not so effective as the air cavity in resistance reductions.

  • PDF

Experimental and Theoretical Investigations on the Fracture Criteria for Structural Steels (구조물용 강재의 파단기준에 대한 실험 및 이론 연구)

  • Choung, Joon-Mo;Cho, Sang-Rai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.157-167
    • /
    • 2008
  • Six smooth flat tensile specimens and eighteen punch specimens with three different thicknesses were machined from steel of JIS G3131 SPHC. In addition to punch tests, incremental tensile tests were conducted to obtain average true flow stress - logarithmic true strain curves. Through parametric FE simulations for the tensile specimens, material parameters related to GTN model were identified. Using indenters with three kinds of radius, punch tests were carried out to obtain fracture characteristics of punch specimens. Numerical analyses using both fracture models, GTN and $J_2$ plasticity model, gave that the former estimated well the fracture of punch specimen but the latter did not. A new concept for critical size of plate elements was introduced based on minimum relative sharpness between contact structures. Consequently, a new criterion for critical element size was proposed to be less than 20% of minimum relative radius of interacting structures.

Evaluation of Stability of Lining Systems of Landfill Using Discrete Element Method (개별요소법을 사용한 매립지 사면 차수 시스템의 안정성 평가)

  • 박현일;이승래;정구영
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.87-95
    • /
    • 2003
  • In this paper, the discrete element method was applied to evaluate the stability of composite cover and lining system of landfill. This method is capable of estimating the distribution of tensile force and shear stress mobilized in each liner component and its interfaces, based on a relationship of force and displacement. It was assumed that the cover soil and geomembrane were comprised of slices connected with elastoplastic Winkler springs and tensile spring respectively. Parametric study using this method was performed and compared with other techniques based on limit equilibrium method fur the example analysis.