• Title/Summary/Keyword: shear-strengthening effect

Search Result 143, Processing Time 0.025 seconds

Parametric study of shear strength of CFRP strengthened end-web panels

  • Shalaby, Haitham A.;Hassan, Maha M.;Safar, Sherif S.
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.159-172
    • /
    • 2019
  • Strengthening of civil infrastructure with advanced composites have recently become one of the most popular methods. The use of Fiber Reinforced Polymer (FRP) strips plates and fabric for strengthening of reinforced concrete structures has well established design guidelines and standards. Research on the application of FRP composites to steel structures compared to concrete structures is limited, especially for shear strengthening applications. Whereas, there is a need for cost-effective system that could be used to strengthen steel high-way bridge girders to cope with losses due to corrosion in addition to continuous demands for increasing traffic loads. In this study, a parametric finite element study is performed to investigate the effect of applying thick CFRP strips diagonally on webs of plate girders on the shear strength of end-web panels. The study focuses on illustrating the effect of several geometric parameters on nominal shear strength. Hence, a formula is developed to determine the enhancement of shear strength gained upon the application of CFRP strips.

Shear Capacity of the RC T Beams Strengthened for Shear with NSM FRP Strips (FRP 판으로 표면매립 전단보강된 철근콘크리트 T형 보의 전단성능)

  • Seo, Soo-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.256-262
    • /
    • 2022
  • The purpose of this study is to define the shear reinforcing effect of Near-Surface-Mounted (NSM) FRP strips in reinforced concrete (RC) member through a test. Three T shaped RC beams were made and two of them were strengthened with NSM FRP strips for increase shear strength. And those were tested to find the shear strengthening effect. In the test, two case of shear strengthening methods were considered such as 1) with NSM FRP strips having full embedded length and 2) with NSM FRP strips having some what short embedded length and additional externally bonded FRP sheet. As a result, the shear strengthening effect could be obtained when the NSM FRP strips are embedded to have full length up to the bottom of slab. However the shear strength was not increased in the case of having somewhat short embedded length of NSM FRP strips even additional EB sheet was enhanced.

Shear Strengthening Effect of RC Beams with FRP Sheets with respect to Shear Reinforcement Ration (전단보강비에 따른 FRP 쉬트의 전단보강성능)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.68-71
    • /
    • 2004
  • In the shear strengthening with FRP sheets, beams are wrapped around the webs and tension face of critical shear span by fiber sheets. The shear strength of RC beam strengthened with FRP sheets must be calculated based on the effective strain that can be developed in the FRP sheets at ultimate stage because the final failure modes of beams are governed by premature debonding of FRP sheet due to the limitation of bonded length by beam depth. An experimental study is carried out to evaluate the shear strengthening effect of AFRP or GFRP sheets with respect to shear reinforcement ratio of rebar. From the test results, it was found that the additional shear strength provided by GFRP or AFRP can be estimated by $p_w{\cdot}f_w$ based on the maximum effective strain of FRP sheet $4,000m{\mu}$ proposed by ACI 440 committee.

  • PDF

An Experimental Study on Shear-Strengthening Effect of Reinforced Concrete Beams by Steel Plates and GFS (강판 및 유리섬유쉬트로 보강된 철근콘크리트 보의 전단보강 효과에 관한 실험 연구)

  • 최현구;오성영;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.739-744
    • /
    • 2000
  • The aim of this research is to investigate and to compare the shear strengthening effects of steel plates and glass fiber sheets(GFS). Shear damaged beams were repaired by steel plates and GFS. Thickness of steel plates and strengthening type of GFS were taken as the parameters. With loading, the development and propagation of cracks, failure mode and deformation of strengthening materials were checked. The ultimate load was compared with formulas proposed by previous researchers.

  • PDF

A Study on the Shear Capacity of Reinforced Concrete Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트(CFS)로 보강된 철근콘크리트 보의 전단내력에 관한 연구)

  • Gwon, Chul-Sung;Kim, Ha-Yong;Gwon, Woo-Hyun;Baek, Seung-Min;Kwak, Yoon-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.259-262
    • /
    • 2005
  • This paper deals with the shear strengthening effect of RC beams strengthened with carbon fiber sheets. Fifteen strengthened RC beams(including control beam) were experimentally evaluated to determine improvements in shear strength. The major parmeters of experiment variables are fiber sheet strengthening ratios and strengthening methods of fiber sheet(I-S, I-W, U-S, U-W type). Reinforced concrete beams strengthened with carbon fiber sheets were tested under the combined control of load. Considering strengthening ratios and strengthening methods of fiber sheet, shear capacity and failure mode of test specimens were evaluated. The results show that shear capacity of beams strengthened with fiber sheet is about $28.82\%$ in IS type, $20.49\%$ in IW type, $26.04\%$ in US type, $28.70\%$ in UW type higher than the strength of control beam.

  • PDF

Shear Strengthening of Pre-loaded RC Beams Retrofitted with CFS & Steel Plate (재하상태에 따른 탄소섬유쉬트 및 강판의 전단 보강 효과)

  • 김주연;신영수;홍건호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.775-780
    • /
    • 2000
  • This paper was aimed to investigate the shear strengthening effect of the pre-loaded reinforced concrete beams strengthened by carbon fiber sheet (CFS) & steel plate. Main test parameters were the magnitude of pre-loading at the time of the retrofit, the strengthening methods of carbon fiber sheet and aid ratio. A series of seventeen specimens was tested to evaluate the corresponding effect of each parameters such as maximum load capacity, load-deflection relationship, load-strain relationship and failure mode. As a result, using the steel plate can increase the capacity of not only shear but also bending moment.

  • PDF

Shear Strengthening Effect of Pre-loaded RC Beams Strengthened by CFS (재하상태를 고려한 탄소섬유 보강공법의 전단 보강 효과)

  • 김주연;신영수;홍건호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.709-712
    • /
    • 1999
  • This paper was aimed to investigate the shear strengthening effect of the pre-loaded reinforced concrete beams strengthened by carbon fiber sheet (CFS). Main tet parameters was the magnitude of pre-loading at the time of the retrofit and the strengthening method of carbon fiber sheet. A series of nine specimens was tested to evaluate the corresponding effect of each parameters such as maximum load capacity, load-deflection relationship, and failure mode. The results of this study showed that the failure mode is bonding failure between the concrete and the CFS before the tensile failure strain of the CFS is reached.

  • PDF

Shear Failure Behaviour of Reinforced Concrete Deep Beam Strengthened by Carbon Fiber Sheets (탄소섬유시트로 보강된 춤이 큰 철근콘크리트 보의 전단파괴거동(剪斷破壞擧動))

  • Cho, Su-Je;Son, Sung-Hun;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.145-153
    • /
    • 1999
  • The major objective of this study is to investigate experimentally the shear strengthening effect of carbon fiber sheets upon reinforced concrete deep beam and shear failure behavior variation of reinforced concrete deep beam strengthened by carbon fiber sheets. Tests are carried out with 6 specimens were shear failure at first loading tests, and with parameters including the types of shear strengthening of carbon fiber sheets (I type, S type, U type), and plies of sheets (2 ply and 1 ply). From the results of test, analyzed load-deflection of midspan, strain variation of main bars and transverse reinforcement, maximum load capacity of strengthened specimens, and compared with the previous test results.

  • PDF

Experimental Study on the Shear Strengthening Effect of Cracked or Uncracked RC Columns with Carbon Fiber Sheets (균열 및 비균열 철근콘크리트 기둥의 탄소섬유시트 전단보강효과에 관한 실험적 연구)

  • Na, Jung-Min;Lee, Yong-Taeg;Kim, Seung-Hun;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.243-254
    • /
    • 2002
  • This study investigates the structural behavior of cracked or uncracked RC columns retrofitted with CFS and evaluates the shear retrofit performance through experiment. Experimental works were conducted for sixth specimens varied in the adhesion method of CFS, the ratio of shear reinforcement bar, and the existence of crack before retrofitting. Throughout cyclic test, the strength, stiffness, failure modes, and ductility are discussed. The test results show that the retrofitting method with CFS improve the shear strength and ductility. The crack width below 2mm, occurred before retrofitting, didn't reduce the shear strengthening effect.

Strengthening of steel-concrete composite beams with composite slab

  • Subhani, Mahbube;Kabir, Muhammad Ikramul;Al-Amer, Riyadh
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.91-105
    • /
    • 2020
  • Steel-concrete composite beam with profiled steel sheet has gained its popularity in the last two decades. Due to the ageing of these structures, retrofitting in terms of flexural strength is necessary to ensure that the aged structures can carry the increased traffic load throughout their design life. The steel ribs, which presented in the profiled steel deck, limit the use of shear connectors. This leads to a poor degree of composite action between the concrete slab and steel beam compared to the solid slab situation. As a result, the shear connectors that connects the slab and beam will be subjected to higher shear stress which may also require strengthening to increase the load carrying capacity of an existing composite structure. While most of the available studies focus on the strengthening of longitudinal shear and flexural strength separately, the present work investigates the effect of both flexural and longitudinal shear strengthening of steel-concrete composite beam with composite slab in terms of failure modes, ultimate load carrying capacity, ductility, end-slip, strain profile and interface differential strain. The flexural strengthening was conducted using carbon fibre reinforced polymer (CFRP) or steel plate on the soffit of the steel I-beam, while longitudinal shear capacity was enhanced using post-installed high strength bolts. Moreover, a combination of both the longitudinal shear and flexural strengthening techniques was also implemented (hybrid strengthening). It is concluded that hybrid strengthening improved the ultimate load carrying capacity and reduce slip and interface differential strain that lead to improved composite action. However, hybrid strengthening resulted in brittle failure mode that decreased ductility of the beam.