• Title/Summary/Keyword: shear-friction

Search Result 969, Processing Time 0.029 seconds

Seismic responses of asymmetric steel structures isolated with the TCFP subjected to mathematical near-fault pulse models

  • Tajammolian, H.;Khoshnoudian, F.;Bokaeian, V.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.931-953
    • /
    • 2016
  • In this paper, the effects of mass eccentricity of superstructure as well as stiffness eccentricity of isolators on the amplification of seismic responses of base-isolated structures are investigated by using mathematical near-fault pulse models. Superstructures with 3, 6 and 9 stories and aspect ratios equal to 1, 2 and 3 are mounted on a reasonable variety of Triple Concave Friction Pendulum (TCFP) bearings considering different period and damping ratio. Three-dimensional linear superstructure mounted on nonlinear isolators are subjected to simplified pulses including fling step and forward directivity while various pulse period ($T_p$) and Peak Ground Velocity (PGV) amounts as two crucial parameters of these pulses are scrutinized. Maximum isolator displacement and base shear as well as peak superstructure acceleration and drift are selected as the main engineering demand parameters. The results indicate that the torsional intensification of different demand parameters caused by superstructure mass eccentricity is more significant than isolator stiffness eccentricity. The torsion due to mass eccentricity has intensified the base shear of asymmetric 6-story model 2.55 times comparing to symmetric one. In similar circumstances, the isolator displacement and roof acceleration are increased 49 and 116 percent respectively in the presence of mass eccentricity. Furthermore, it is demonstrated that torsional effects of mass eccentricity can force the drift to reach the allowable limit of ASCE 7 standard in the presence of forward directivity pulses.

Mode Characteristics Analysis of the SH-EMAT Waves for Evaluating the Thickness Reduction (두께감육 평가를 위한 SH-EMAT파의 모드특성 분석)

  • Park, I.K.;Kim, Y.K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.198-203
    • /
    • 2010
  • In this paper, study on the mode characteristics analysis of the SH-EMAT (shear horizontal, electromagnetic acoustic transducer) waves for evaluating the thickness reduction in plates such as corrosion and friction is presented. Noncontact methods for ultrasonic wave generation and detection have been a great concern and highly demanded due to their capability of wave generation and reception on surface of high temperature or on rough surface. Mode identification of the SH-EMAT wave is carried out in an aluminum plate with thinning defects using time frequency analysis method such as wavelet transform, compared with theoretically calculated group velocity dispersion curve. The changes of various wave features such as the amplitude and the time-of-flight have been observed and the correlations with the thickness reduction have been investigated. Firstly, experiments have been conducted to confirm that it is possible to selectively generate and receive specific desired SH modes. These modes have then been analyzed to select the parameters that are sensitive to the thickness change. The results show that the mode cutoff and the time-of-flight changes are feasible as key parameters to evaluate the thickness reduction.

The Effects of Draw Ratio of Worsted Yarn on the Mechanical Properties of Knitted Fabrics (소모연신사의 연신비가 니트의 역학적 성질에 미치는 영향)

  • Han, Won-Hee;Kim, Seung-Jin
    • Textile Coloration and Finishing
    • /
    • v.22 no.3
    • /
    • pp.272-281
    • /
    • 2010
  • This paper surveys the effects of drawing conditions of the worsted staple yarns on the mechanical properties of the knitted fabrics for highly aesthetical fabrics. The drawn worsted yarns were made on the yarn drawing system with various draw ratios under the fixed conditions of setting time, reduction and oxidation. The knitted fabric specimens were prepared on the 16 gauge circular knitting machine using these drawn worsted staple yarns. The tensile, shear, bending, compression and surface properties of these knitted fabrics were measured by KES-FB-AUTO-A system and also discussed with the drawing conditions. The tensile linearity, shear stiffness and bending rigidity decreased with increasing draw ratio. Any changes were not shown on the compressional properties with drawing conditions. But the friction coefficient of the knitted fabric on the course direction increased with increasing draw ratio, while there was no change according to the draw ratio on the wale direction.

INFLUENCE OF SLIP CONDITION ON RADIATIVE MHD FLOW OF A VISCOUS FLUID IN A PARALLEL POROUS PLATE CHANNEL IN PRESENCE OF HEAT ABSORPTION AND CHEMICAL REACTION.

  • VENKATESWARLU, M.;VENKATA LAKSHMI, D.;DARMAIAH, G.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.333-354
    • /
    • 2016
  • The present investigation deals, heat and mass transfer characteristics with the effect of slip on the hydromagnetic pulsatile flow through a parallel plate channel filled with saturated porous medium. Based on the pulsatile flow nature, exact solution of the governing equations for the fluid velocity, temperature and concentration are obtained by using two term perturbation technique subject to physically appropriate boundary conditions. The expressions of skin friction, Nusselt number and Sherwood number are also derived. The numerical values of the fluid velocity, temperature and concentration are displayed graphically whereas those of shear stress, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. By increasing the slip parameter at the cold wall the velocity increases whereas the effect is totally reversed in the case of shear stress at the cold wall.

Strength and Deformation Characteristic of Two-Phase Mixture Soil (폐기물을 포함한 이종혼합토의 강도·변형특성)

  • Lee, Ki-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.2
    • /
    • pp.33-39
    • /
    • 2001
  • In order to utilize mass of oyster shells for a partial substitute material for reclamation, the shear characteristics of two-phase mixture soil with oyster shells were investigated with $\overline{CU}$ test. From various experiments, it was found that the increase of mixed ratio of oyster shells causes the shear strength of mixed soil. And this phenomenon not only depends on friction due to confining pressure such as pure clay but also is influenced by shaping skeleton of oyster shells. Also, it was discovered that there were many influences by clay-oyster shell mixture from the study of the secant modulus and dilatancy characteristics of mixed soil. In addition, variation of oyster shell skeleton during shearing stage is examined applying modifying coefficient concept.

  • PDF

An analytic study on the bond stress between concrete and steel tube in CFT tublar column (충전원형강관기둥에서 콘크리트와 강관의 부착응력에 관한 해석적 연구)

  • Kang, Joo-Won;Park, Sung-Moo;Kim, Youn-Tae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.3 s.17
    • /
    • pp.101-107
    • /
    • 2005
  • An analytic study on the bond stress between steel tube and concrete in concrete filled steel(CFT) tublar column is presented in this paper. Recently buildings need members which are enhanced durability and ductility. Concrete filled tublar column system is proposed as alternative plan. In this paper, ABAQUS/Standard Version 5.8 which is identified as usefulness for finite element analysis and has various element library is used. The variables in this study are the location and type of shear-connector. The modeling ell contact problem practiced by Contact Pair and Contact Pressure method. In the step of physical bond, it is practiced by Change friction option. After yielding of models, analytic results is less than that of experimental results.

  • PDF

Influence of Facing Stiffness on Global Stability. of Soil Nailing Systems (전면벽체의 강성이 Soil Nailing 시스템의 전체안정성에 미치는 영향)

  • Kim, Hong-Taek;Kwon, Young-Ho;Kang, In-Kyu;Park, Sa-Won;Kang, Yun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.427-434
    • /
    • 2002
  • In Korea, there are recently many attempts to expand a temporary soil nailing system into a permanent soil nailing system since the first construction in 1993. In the downtown area, it is important that the relaxation of the ground is minimized in the ground excavation works. Due to these problems, soil nailing systems are often used the flexible facing such as shotcrete rather than the rigid facing such as SCW, CIP, and jet grout types in Korea. The soil nailing systems with rigid facings are used greatly however it is insufficient researches for design and analysis of soil nailing systems with rigid facings. In this study, various laboratory model tests are carried out to examining the influence the rigidity of facings on the global safety of soil nailing system, failure loads, displacement behaviour, axial force acting on the nails, and distribution of earth pressure. Also, the parametric studies are carried out for the typical section of soil nailed walls according to thickness of concrete facings and internal friction angle of soil using the numerical technique as shear strength reduction technique.

  • PDF

Engineering behavior of expansive soils treated with rice husk ash

  • Aziz, Mubashir;Saleem, Masood;Irfan, Muhammad
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.173-186
    • /
    • 2015
  • The rapid urbanization in Pakistan is creating a shortage of sustainable construction sites with good soil conditions. Attempts have been made to use rice husk ash (RHA) in concrete industry of Pakistan, however, limited literature is available on its potential to improve local soils. This paper presents an experimental study on engineering properties of low and high plastic cohesive soils blended with 0-20% RHA by dry weight of soil. The decrease in plasticity index and shrinkage ratio indicates a reduction in swell potential of RHA treated cohesive soils which is beneficial for problems related to placing pavements and footings on such soils. It is also observed that the increased formation of pozzolanic products within the pore spaces of soil from physicochemical changes transforms RHA treated soils to a compact mass which decreases both total settlement and rate of settlement. A notable increase in friction angle with increase in RHA up to 16% was also observed in direct shear tests. It is concluded that RHA treatment is a cost-effective and sustainable alternate to deal with problematic local cohesive soils in agro-based developing countries like Pakistan.

Aspect Ratio Behavior of Grinding Particles with Variation of Particle Size by Wet Grinding (습식분쇄에 의한 입자크기 변화에 따른 분쇄입자의 종횡비 거동)

  • Choi, Jin Sam
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.223-230
    • /
    • 2020
  • As a case study on aspect ratio behavior, Kaolin, zeolite, TiO2, pozzolan and diatomaceous earth minerals are investigated using wet milling with 0.3 mm media. The grinding process using small media of 0.3 pai is suitable for current work processing applications. Primary particles with average particle size distribution D50, ~6 ㎛ are shifted to submicron size, D50 ~0.6 ㎛ after grinding. Grinding of particles is characterized by various size parameters such as sphericity as geometric shape, equivalent diameter, and average particle size distribution. Herein, we systematically provide an overview of factors affecting the primary particle size reduction. Energy consumption for grinding is determined using classical grinding laws, including Rittinger's and Kick's laws. Submicron size is obtained at maximum frictional shear stress. Alterations in properties of wettability, heat resistance, thermal conductivity, and adhesion increase with increasing particle surface area. In the comparison of the aspect ratio of the submicron powder, the air heat conductivity and the total heat release amount increase 68 % and 2 times, respectively.

Interpretation of Strain States during Clad-Rolling of STS/Al 5 Ply Composites by Means of Texture Analysis (집합조직 분석에 의한 5겹 STS/Al 복합재 클래드 압연 시 변형상태 해석)

  • Kang H. G.;Park J. S.;Park S. H.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.303-306
    • /
    • 2005
  • Two composites of five plies of STS/Al/Al/Al/STS and STS/Al/STS/Al/STS were produced by roll-cladding at $350^{\circ}C$ from ferritic stainless steel (STS) and aluminum (Al) sheets. In order to analyze the strain states during roll-cladding, the evolution of textures at different through-thickness positions in the roll-clad composites was investigated. Simulations with the finite element method (FEM) disclosed that a strain state which was similar to that of normal rolling with a high friction between roll surface and Al sample led to the formation of texture gradients in the Al sheets in the STS/Al/Al/Al/STS composite. Differences in the material velocity of STS and Al in the rolling direction gave rise to the formation of the shear texture in the Al sheets in the STS/Al/STS/Al/STS composite.

  • PDF