• Title/Summary/Keyword: shear velocities

Search Result 272, Processing Time 0.038 seconds

Evolution of Strain States and Textures During Symmetrical/Asymmetrical Cold Rolling (냉간 대칭/비대칭 압연시 압연변형율 상태와 집합조직의 형성)

  • Huh Moo-Young;Lee Jae-Pil;Lee Jae-Hyup
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.19-24
    • /
    • 2004
  • Symmetrical and asymmetrical rolling was performed in AA 1050 sheets. Asymmetrical rolling was carried out by using different roll velocities of upper and lower rolls. The effect of the reduction per rolling pass on the formation of textures and microstructures during symmetrical and asymmetrical rolling was studied. In order to intensify the shear deformation, symmetrical and asymmetrical rolling was carried out without lubrication. The strain states associated with rolling were investigated by simulations with the finite element method (FEM). A fairly homogeneous residual shear strain throughout the sheet thickness was observed after asymmetrical rolling. Symmetrical rolling with a high friction gave rise to a strong net shear strain gradient in the sheet thickness.

  • PDF

The Study on Changes of Mixing Layer Caused by Acoustic Excitation (음향 여기에 의한 혼합층 유동구조의 변화에 대한 연구)

  • 정양범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.120-127
    • /
    • 2000
  • This study is concerned with evaluating the effects of acoustic excitation on the development of two stream mixing layer generated by split plate. The ratios of two velocities U1 and U2 either side of the splitter plate were such that $U_1/U_2$=1.0 (uniform flow) or $U_1/U_2$<1.0(shear flow). The mixing layers were disturbed acoustically through the edge of split plate. Quantitative data were obtained with hot-wire anemometry. Flow visualization with smoke-wire was also employed for qualitative study. the results show that the large scale structures of mixing layers are strongly affected by excitation frequency and amplitude in both uniform and shear flows. The maximum streamwise and vertical turbulent intensities of the excited flow fields are apt to be decreased as compared with those of without excitation. The flow characteristics of uniform flow are more influenced by acoustic excitation than those of shear flow.

  • PDF

Development of Data Analysis Method for Surface Wave Test (표면파 지반 탐사를 위한 새로운 신호 처리기법의 개발)

  • Park, Hyung-Choon;Kim, Dong-Soo;Cho, Sung-Eun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.237-240
    • /
    • 2007
  • The evaluation of shear modulus (or shear wave velocity) profile of site is very important in the various fields of geotechnical engineering. To obtain shear wave velocity profile, various in-situ seismic methods using surface waves have been developed. These surface wave based in-situ seismic methods have their own strength and weakness. In this study, new seismic site characterization method using the harmonic wavelet analysis of wave (HWAW) was proposed to overcome some of weaknesses in the existing surface wave based seismic site characterization methods. HWAW method which is based on time-frequency analysis using harmonic wavelet transform have been developed to determine phase and group velocities of waves. In order to estimate the applicability of HWAW method, field tests were performed. Through field applications and comparison with other test results, the applicability of the proposed method were verified.

  • PDF

Comparison of Shear-wave Velocity Sections from Inverting SH-wave Traveltimes of First Arrivals and Surface Wave Dispersion Curves (SH파 초동주시 역산과 표면파 분산곡선 역산으로부터 구한 횡파속도 단면 비교)

  • Lee, Chang-Min;Kim, Ki-Young
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2005
  • Two-dimensional S-wave velocity sections from SH-wave refraction tomography and surface wave dispersions were obtained by inverting traveltimes of first arrivals and surface wave dispersions, respectively. For the purpose of comparison, a P-wave velocity tomogram was also obtained from a P-wave refraction profiling. P and Rayleigh waves generated by vertical blows on a plate with a sledgehammer were received by 100- and 4.5-Hz geophones, respectively. SH-waves generated by horizontal blows on both sides of a 50 kg timber were received by 8 Hz horizontal geophones. The shear-wave signals were enhanced subtracting data of left-side blows from ones of the right-side blows. Shear-wave velocities from tomography inversion of first-arrival times were compared with ones from inverting dispersion curves of Rayleigh waves. Although the two velocity sections look similar to each other in general, the one from the surface waves tends to have lower velocities. First arrival picking of SH waves is troublesome since P and PS-converted waves arrive earlier than SH waves. Application of the surface wave method, on the other hand, is limited where lateral variation of subsurface tructures is not mild.

  • PDF

Shallow Shear-wave Velocities Using the Microtremor Survey Method (상시미동 측정을 통한 천부 횡파속도 연구)

  • Hwang, Yoon-Gu;Kim, Ki-Young
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.381-392
    • /
    • 2006
  • The passive surface wave survey using microtremor is conducted in areas of crystalline rock basements to obtain average shear-wave velocity structures to 30 m deep (Vs30), on which the earthquake-resistant design standard is based. Test data were recorded at two sites with triangular and L-shaped arrays for 4 seconds with an sampling interval of 2 ms. The microtremor recorded at a site were analysed using the spatial autocorrelation method to obtain phase-velocity spectra and effects of major factors such as size and shape of away and number of record and receiver were examined. At the other site, shear-wave velocities were derived from VSP and microtremor data separately. The results from these two methods agree to each other reasonably well, indicating that the microtremor method can be an effective geophysical tool to measure Vs30.

Characteristics of Shear Wave Velocity as Stress-induced and Inherent Anisotropies (응력유도 및 고유 이방성에 따른 전단파 속도 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Truong, Hung-Quang;Cho, Tae-Hyeon;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.47-54
    • /
    • 2006
  • Shear wave velocity of uncemented soil can be expressed as the function of effective stresses when capillary phenomena are negligible. However, the terms of effective stresses are divided into the direction of wave propagation and polarization because stress states are generally anisotropy. The shear wave velocities are affected by ${\alpha}$ parameters and ${\beta}$ exponents that are experimentally determined. The ${\beta}$ exponents are controlled by contact effects of particulate materials (sizes, shapes, and structures of particles) and the ${\alpha}$ parameters are changed by contact behaviors among particles, material properties of particles, and type of packing (i.e., void ratio and coordination number). In this study, consolidation tests are performed by using clay, mica and sand specimens. Shear wave velocities are measured during consolidation tests to investigate the stress-induced and inherent anisotropies by using bender elements. Results show the shear wave velocity depends on the stress-induced anisotropy for round particles. Furthermore, the shear wave velocity is dependent on particle alignment under the constant evvective stress. This study suggests that the shear wave velocity and the shear modulus should be carefully estimated and used for the design and construction of geotechnical structures.

Rayleigh-wave Phase Velocities and Spectral Amplitudes Affected by Insertion of an Anomalous Velocity Layer in the Overburden (천부 속도이상층이 레일리파 위상속도 및 수직변위 스펙트럼 진폭에 미치는 영향)

  • Kim, Ki Young;Jung, Jinhoon
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.155-162
    • /
    • 2012
  • The Thomsen-Haskell method was used to determine sensitivities of the Rayleigh-wave phase velocities and spectral amplitude of vertical ground motion to insertion of a single velocity-anomaly layer into overburden underlain by a basement. The reference model comprised a 9-m thick overburden with shear-wave velocity (${\nu}_s$ of 300 m/s above a half-space with ${\nu}_s$ = 1000 m/s. The inserted layer, with a velocity of 150, 225, 375, or 450 m/s and a thickness of 1, 2, or 3 m, was placed at depths increasing from the surface in increments of 1 m. Phase velocities were computed for frequencies of 4 to 30 Hz. For inserted layer models, we placed an anomalous layer with thickness of 1 ~ 3 m, shear-wave velocity of 150 ~ 450 m/s, and at depths of 0 ~ 8 m in the overburden. The frequency range of 8 ~ 20 Hz were the most sensitive to the difference of $C_R$ between the inserted and reference models (${\Delta}C_R$) for h = 1 m and the frequency range got wide as h increased. For all of the models, the spectral amplitudes of the fundamental mode exceeded those of the $1^{st}$-higher mode except at frequencies just above the low-frequency cutoff of the $1^{st}$-higher mode.

Field Elastic Wave and Electrical Resistivity Penetrometer for Evaluation of Elastic Moduli and Void Ratio (탄성계수 및 간극비 평가를 위한 현장 관입형 탄성파 및 전기비저항 프로브)

  • Yoon, Hyung-Koo;Kim, Dong-Hee;Lee, Woojin;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.85-93
    • /
    • 2010
  • The shear stiffness has become an important design parameter to understand the soil behavior. In particular, the elastic moduli and void ratio has been considered as important parameters for the design of the geotechnical structures. The objective of this paper is the development of the penetration type Field Velocity and Resistivity Probe (FVRP) which is able to assess the elastic moduli and void ratio based on the elastic wave velocities and electrical resistivity. The elastic waves including the compressional and shear wave are measured by piezo disk elements and bender elements. And the electrical resistivity is measured by the resistivity probe, which is manufactured and installed at the tip of the FVRP. The penetration tests are carried out in calibration chamber and field. In the laboratory calibration chamber test, after the sand-clay slurry mixtures are prepared and consolidated. The FVRP is progressively penetrated and the data are measured at each 1 cm. The field experiment is also carried out in the southern part of Korea Peninsular. Data gathering is performed in the depth of 6~20 m at each 10 cm. The elastic moduli and void ratio are estimated based on the analytical and empirical solutions by using the elastic wave velocities and electrical resistivity measured in the chamber and field. The void ratios based on the elastic wave velocities and the electrical resistivity are similar to the volume based void ratio. This study suggests that the FVRP, which evaluates the elastic wave velocities and the electrical resistivity, may be a useful instrument for assessing the elastic moduli and void ratio in soft soils.

Estimation of Disturbed Zone Around Rock Masses with Tunnel Excavation Using PS Logging (PS검층에 의한 터널굴착에 따른 주변암반의 이완영역 평가)

  • Park, Sam Gyu;Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.527-534
    • /
    • 1998
  • Excavation of underground openings changes stress distribution around the opening. The survey of this disturbed zone in excavation is very important to design and construct underground facilities, such as tunnel, gas and oil storage, power plant and disposal site of high- and low-level radioactive wastes. This paper presents a zoning of rock masses with tunnel excavation using PS logging. Compressional and shear wave velocities are measured in boreholes drilled in the tunnel wall, which was constructed with blasting and/or machine excavation. The disturbed zone in excavation can be estimated by comparing PS logging data with a tomographic image of compressional wave velocity and compressional and shear wave velocities of core samples. In the side wall of tunnel, the disturbed zone reaches 1.5 m and 1.0 m in thickness for blocks of blasting and machine excavations, respectively. In the roof of tunnel, however, the disturbed zone is 1.0 m and 0.75 m thick for the two blocks. These results show that the width of the disturbed zone is larger in the side wall of tunnel than in the roof, and 1.3 to 1.5 times larger for the blasting excavation than for the machine excavation.

  • PDF