Browse > Article
http://dx.doi.org/10.12652/Ksce.2010.30.2C.085

Field Elastic Wave and Electrical Resistivity Penetrometer for Evaluation of Elastic Moduli and Void Ratio  

Yoon, Hyung-Koo (고려대학교 건축사회환경공학부)
Kim, Dong-Hee (고려대학교 건축사회환경공학부)
Lee, Woojin (고려대학교 건축사회환경공학부)
Lee, Jong-Sub (고려대학교 건축사회환경공학부)
Publication Information
KSCE Journal of Civil and Environmental Engineering Research / v.30, no.2C, 2010 , pp. 85-93 More about this Journal
Abstract
The shear stiffness has become an important design parameter to understand the soil behavior. In particular, the elastic moduli and void ratio has been considered as important parameters for the design of the geotechnical structures. The objective of this paper is the development of the penetration type Field Velocity and Resistivity Probe (FVRP) which is able to assess the elastic moduli and void ratio based on the elastic wave velocities and electrical resistivity. The elastic waves including the compressional and shear wave are measured by piezo disk elements and bender elements. And the electrical resistivity is measured by the resistivity probe, which is manufactured and installed at the tip of the FVRP. The penetration tests are carried out in calibration chamber and field. In the laboratory calibration chamber test, after the sand-clay slurry mixtures are prepared and consolidated. The FVRP is progressively penetrated and the data are measured at each 1 cm. The field experiment is also carried out in the southern part of Korea Peninsular. Data gathering is performed in the depth of 6~20 m at each 10 cm. The elastic moduli and void ratio are estimated based on the analytical and empirical solutions by using the elastic wave velocities and electrical resistivity measured in the chamber and field. The void ratios based on the elastic wave velocities and the electrical resistivity are similar to the volume based void ratio. This study suggests that the FVRP, which evaluates the elastic wave velocities and the electrical resistivity, may be a useful instrument for assessing the elastic moduli and void ratio in soft soils.
Keywords
compressional wave; elastic moduli; electrical resistivity; field test; shear wave; void ratio;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 김준한, 윤형구, 정순혁, 이종섭(2009a) 4전극 전기비저항 탐사장비의 개발 및 검증, 대한토목학회 논문집, 대한토목학회, 제29권 제3C호, pp. 127-136.
2 김준한, 윤형구, 최용규, 이종섭(2009b) 전기비저항 콘 프로브를 이용한 해안 연약 지반의 간극률 산정, 한국지반공학회 논문집, 한국지반공학회, 제25권 제2호, pp. 45-54.   과학기술학회마을
3 박삼규(2004) 지반의 전기비저항을 좌우하는 물성요인, 물리탐사학회 논문집, 한국물리탐사학회, 제7권 제2호, pp. 130-135.   과학기술학회마을
4 오명학, 이기호, 박준범(2004) 함수비와 간극수 오염이 불포화 사질토의 전기비저항에 미치는 영향, 대한토목학회 논문집, 대한토목학회, 제24권 제1C호, pp. 27-34.
5 윤여원, 김영진, 김영석, 최은호(2007) 불교란 시료의 채취 방식에 따른 교란도 평가, 한국지반환경공학회 학술 발표회, 한국지반환경공학회, pp. 209-214.
6 윤형구, 이창호, 엄용훈, 이종섭(2007) 연약지반 평가를 위한 블레이드 타입 현장 전단파 속도 프로브, 한국지반공학회 논문집, 한국지반공학회, 제23권 제12호, pp. 33-42.   과학기술학회마을
7 한국지반공학회(2005) 연약지반, 지반공학 시리즈, 구미서관.
8 Abu-Hassanein, Z. S., Benson, C. H. and Blotz, L. R. (1996). Electrical resistivity of compacted clays, Journal of Geotechnical Engineering, ASCE, Vol. 122, No. 5, pp. 397-406.   DOI
9 Archie, G. E. (1942) The electrical resistance log as an aid in determining some reservoir characteristics, Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, Vol. 146, pp. 54-62.
10 Berryman, J. G. (1995) Mixture Theories for Rock Properties, In Rock physics and phase relations: A handbook of physical constants. Washington: American Geophysical Union.
11 Biot, M. A. (1956a) Theory of propagation of elastic waves in a fluid-saturated porous solid. I low-frequency range, Journal of Acoustic society America, Vol. 28, pp. 161-178.
12 Biot, M. A. (1956b) Theory of propagation of elastic waves in a fluid-saturated porous solid. II high-frequency range, Journal of Acoustic society America, Vol. 28, pp. 179-191.   DOI
13 Chung, S. G., Kwag, J. M., Giao, P. H., Baek, S. H. and Prasad, K. N. (2004) Study of soil disturbance of Pusan clays with reference to drilling, sampling and extruding, Geotechnique, Vol. 54, No. 1, pp. 61-65.   DOI   ScienceOn
14 Foti, S., Lai, C. G. and Lancellotta, R. (2002) Porosity of fluid-saturated porous media from measured seismic wave velocities, Geotechnique, Vol. 52, No. 5, pp. 359-373.   DOI   ScienceOn
15 Kim, T., Kim, N. K., Tumay, M. T., and Lee W. (2007) Spatial distribution of excess pore-water pressure due to piezocone penetration in overconsolidated clay, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 133, No. 6, pp. 674-683.   DOI   ScienceOn
16 Klimentos, T. and McCann, C. (1990) Relationships between compressioal- wave attenuation, porosity clay content and permeability in sandstones, Geophysics, Vol. 55, pp. 998-1014.   DOI
17 Lee, J. S., Lee, C., Yoon, H. K., and Lee, W. (2010) Penetration type field velocity probe, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 136, No. 1, pp. 199-206.   DOI   ScienceOn
18 Mavko, G., Mukerji, T., and Dvorkin, J. (2003) The Rock Physics Handbook, Cambridge University Press.
19 Miura, K., Yoshida, N., and Kim, Y. S. (2001) Frequency dependent property of waves in saturated soil, ZSoils and Foundations, Vol. 41, No. 2, pp. 1-19.   DOI   ScienceOn
20 Salem, H. S. and Chilingarian, G. V. (1999) The cementation factor of Archie's equation for shaly sandstone reservoirs, Journal of Petroleum Science and Engineering, Vol. 23, pp. 83-93.   DOI   ScienceOn
21 Santamarina, J.C., Klein, K.A., and Fam, N.A. (2001) Soils and Waved, John wiley & Sons.
22 Winsauer, W. O., Shearin, H. M., Masson, P. H. and Williams, M. (1952) Resistivity of brine-saturated sands in relation to poregeometry, Bull. AAPG, Vol. 36, pp. 253-277.
23 Yoon, H. K., Lee, J. S., Kim, Y. U., and Yoon, S. (2008) Fork blade-type field velocity probe for measuring shear waves, Modern Physics Letters B, MPLB, Vol. 22, No. 11, pp. 965- 969.   DOI   ScienceOn