• Title/Summary/Keyword: shear strength degradation

Search Result 185, Processing Time 0.028 seconds

Geotechnical characteristics and empirical geo-engineering relations of the South Pars Zone marls, Iran

  • Azarafza, Mohammad;Ghazifard, Akbar;Akgun, Haluk;Asghari-Kaljahi, Ebrahim
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.393-405
    • /
    • 2019
  • This paper evaluates the geotechnical and geo-engineering properties of the South Pars Zone (SPZ) marls in Assalouyeh, Iran. These marly beds mostly belong to the Aghajari and Mishan formations which entail the gray, cream, black, green, dark red and pink types. Marls can be observed as rock (soft rock) or soil. Marlstone outcrops show a relatively rapid change to soils in the presence of weathering. To geotechnically characterise the marls, field and laboratory experiments such as particle-size distribution, hydrometer, Atterberg limits, uniaxial compression, laboratory direct-shear, durability and carbonate content tests have been performed on soil and rock samples to investigate the physico-mechanical properties and behaviour of the SPZ marls in order to establish empirical relations between the geo-engineering features of the marls. Based on the experiments conducted on marly soils, the USCS classes of the marls is CL to CH which has a LL ranging from 32 to 57% and PL ranging from 18 to 27%. Mineralogical analyses of the samples revealed that the major clay minerals of the marls belong to the smectite or illite groups with low to moderate swelling activities. The geomechanical investigations revealed that the SPZ marls are classified as argillaceous lime, calcareous marl and marlstone (based on the carbonate content) which show variations in the geomechanical properties (i.e., with a cohesion ranging from 97 to 320 kPa and a friction angle ranging from 16 to 35 degrees). The results of the durability tests revealed that the degradation potential showed a wide variation from none to fully disintegrated. According to the results of the experiments, the studied marls have been classified as calcareous marl, marlstone and argillaceous lime due to the variations in the carbonate and clay contents. The results have shown that an increase in the carbonate content leads to a decrease in the degradation potential and an increase in the density and strength parameters such as durability and compressive strength. A comparison of the empirical relationships obtained from the regression analyses with similar studies revealed that the results obtained herein are reasonably reliable.

Modeling of pressuremeter tests to characterize the sands

  • Oztoprak, Sadik;Sargin, Sinan;Uyar, Hidayet K.;Bozbey, Ilknur
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.509-517
    • /
    • 2018
  • This paper proposes a numerical methodology for capturing the complete curve of a pressuremeter test including initial or disturbed parts and loops through a stiffness-based approach adopted in three dimensional finite difference code, FLAC3D. In order to enable this, a new hyperbolic model was used to replace the conventional linear elastic model prior to peak strength of Mohr-Coulomb soil model and update or degradation of shear modulus was considered. Presented modeling approach and implemented constitutive model are impressively successful. It leads to obtain the whole set of parameters for characterizing sands and seems promising for modeling the most of geotechnical structures.

Mechanical Properties Evaluation of Composites for Electromagnetic Waves Absorption (전자기파 흡수용 복합재료의 기계적 강도평가)

  • 오정훈;김천곤;홍창선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.105-108
    • /
    • 2002
  • Materials, matrices mixed with various kinds of conductive or magnetic powder, such as ferrite, have been used as the electromagnetic wave absorbing ones, so called RAM(radar absorbing material). The structure that does not only have electromagnetic waves absorbing property like RAM but also supports loads is called RAS(radar absorbing structure). One of the existing manufacturing process of RAS is to compound with conductive powders the glass fiber-reinforced composite with good permeability and the ability to support loads. The process, however, causes a number of problems, such as the degradation in the mechanical properties of the composite, especially, interlamina shear strength. In this study, mechanical properties of glass fabric/epoxy composite containing 7wt% carbon black powders were measured and compared with pure glass fabric/epoxy composites.

  • PDF

Nonlinear Dynamic Response of Well-Slab Apartment Building Considering The Behavior of Coupling Elements (벽식 아파트 구조에서 연결부재의 거동특성을 고려한 비선형 동적 응답)

  • 김기현;장극관;서대원;천영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.437-442
    • /
    • 2002
  • The purpose of this study is to investigate nonlinear behavior and estimate ultimate resistance of the wall structure against seismic loading. Experimental data for RC coupling elements are used for specifying the strength deterioration and stiffness degradation factor of hysteretic model. Modified coupling element models are used in the push over analysis and time history analysis. In the time history analysis, three earthquake waves are used in the analysis and their peak ground accelerations are changed to be 0.2g. The conclusions of this study are as follows : (1) In the push over analysis, yielding of coupling elements occurred at lower story with small story drift ratio as 0.3%. (2) In the time history analysis, the story drift ratio is sufficient for the requirement of Korean Code, But coupling elements at most stories of the buildings occurred yielding. i. e. the earthquake resistant capacity of shear wall structures is not sufficient at 0.2g.

  • PDF

Hypoelastic modeling of reinforced concrete walls

  • Shayanfar, Mohsen A.;Safiey, Amir
    • Computers and Concrete
    • /
    • v.5 no.3
    • /
    • pp.195-216
    • /
    • 2008
  • This paper presents a new hypoelasticity model which was implemented in a nonlinear finite element formulation to analyze reinforced concrete (RC) structures. The model includes a new hypoelasticity constitutive relationship utilizing the rotation of material axis through successive iterations. The model can account for high nonlinearity of the stress-strain behavior of the concrete in the pre-peak regime, the softening behavior of the concrete in the post-peak regime and the irrecoverable volume dilatation at high levels of compressive load. This research introduces the modified version of the common application orthotropic stress-strain relation developed by Darwin and Pecknold. It is endeavored not to violate the principal of "simplicity" by improvement of the "capability" The results of analyses of experimental reinforced concrete walls are presented to confirm the abilities of the proposed relationships.

Nonlinear Analysis of RC Panels under Cyclic Loadings (반복하중을 받는 철근콘크리트 판넬의 비선형 해석)

  • 곽효경;김도연
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.182-189
    • /
    • 2000
  • This paper presents a simple and reliable constitutive model for predicting the nonlinear response of reinforced concrete subjected to general membrane loadings. Based on the concept of equivalent uniaxial strain, constitutive relations of concrete are presented in the axes of orthotropy. The behavior of cracked concrete is described by a system of orthogonal cracks, which follows the principal strain directions and rotates according to the loading history. Simple hysteretic rules defining the cyclic stress-strain curves of concrete and steel are used. In addition, the stiffness and strength degradation of cracked concrete is included in the formulation. Correlation studies between analytical results and experimental values from idealized shear panel tests are conducted with the objective to establish the validity of the proposed model.

  • PDF

Analytic Hysteretic Model of Reinforced Concrete Members (철근콘크리트 부재의 해석적 이력모델)

  • 정영수
    • Computational Structural Engineering
    • /
    • v.4 no.1
    • /
    • pp.133-142
    • /
    • 1991
  • A mathematical hysteretic model has been developed to analytically reproduce the experimental hysteretic behavior of reinforced concrete members. This mode[2, 3] can simulate the nonlinear response of reinforced concrete members with sufficient accuacy, which are characterized by following important hysteretic behaviors: stiffness degradation, strength deterioration and shear effect. In order to illustrate the capabilities of the proposed mathematical model, numerical examples are presented with the reproduction of experimental hysteretic behavior of RC members and frames.

  • PDF

Experimental and numerical studies on the frame-infill in-teraction in steel reinforced recycled concrete frames

  • Xue, Jianyang;Huang, Xiaogang;Luo, Zheng;Gao, Liang
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1391-1409
    • /
    • 2016
  • Masonry infill has a significant effect on stiffness contribution, strength and ductility of masonry-infilled frames. These effects may cause damage of weak floor, torsional damage or short-column failure in structures. This article presents experiments of 1/2.5-scale steel reinforced recycled aggregates concrete (SRRC) frames. Three specimens, with different infill rates consisted of recycled concrete hollow bricks (RCB), were subjected to static cyclic loads. Test phenomena, hysteretic curves and stiffness degradation of the composite structure were analyzed. Furthermore, effects of axial load ratio, aspect ratio, infill thickness and steel ratio on the share of horizontal force supported by the frame and the infill were obtained in the numerical example.

Lead-free Solder for Automotive Electronics and Reliability Evaluation of Solder Joint (자동차 전장용 무연솔더 및 솔더 접합부의 신뢰성 평가)

  • Bang, Jung-Hwan;Yu, Dong-Yurl;Ko, Young-Ho;Yoon, Jeong-Won;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.26-34
    • /
    • 2016
  • Automotive today has been transforming to an electronic product by adopting a lot of convenience and safety features, suggesting that joining materials and their mechanical reliabilities are getting more important. In this study, a Sn-Cu-Cr-Ca solder composition having a high melting temperature ($>230^{\circ}C$) was fabricated and its joint properties and reliability was investigated with an aim to evaluate the suitability as a joining material for electronics of engine room. Furthermore, mechanical properties change under complex environment were compared with several existing solder compositions. As a result of contact angle measurement, favorable spreadability of 84% was shown and the average shear strength manufactured with corresponding composition solder paste was $1.9kg/mm^2$. Also, thermo-mechanical reliability by thermal shock and vibration test was compared with that of the representative high temperature solder materials such as Sn-3.5Ag, Sn-0.7Cu, and Sn-5.0Sb. In order to fabricate the test module, solder balls were made in joints with ENIG-finished BGA and then the BGA chip was reflowed on the OPS-finished PCB pattern. During the environmental tests, resistance change was continuously monitored and the joint strength was examined after tests. Sn-3.5Ag alloy exhibited the biggest degradation rate in resistance and shear stress and Sn-0.7Cu resulted in a relatively stable reliability against thermo-mechanical stress coming from thermal shock and vibration.

Influence of Reinforcement Ratio on the Hysteratic Behavior of Rectangle Column-Slab Connection (장방형 기둥-슬래브 접합부의 이력거동에 대한 철근비의 영향)

  • Cho, In-Jung;Choi, Myung-Shin;Shin, Sung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.53-56
    • /
    • 2008
  • In this investigation, results of laboratory tests on six reinforce concrete flat plate interior connections with elongated rectangular column support which has been used widely in tall residential buildings are presented. The purpose of this study is to evaluate an effect of column aspect ratio(${\beta}$c=$c_1/c_2$) on the hysteretic behavior under earthquake type loading. The aspect ratio of column section was taken as 0.33${\sim}$3($c_1/c_2$=1/3, 1/1, 3/1). Other design parameters such as flexural reinforcement ratio of slab and concrete strength was kept constant as ${\rho}$=1.0%, 1.5% and $f){ck}$=40MPa, respectively. Gravity shear load($V_g$) was applied by 30 percents of nominal vertical shear strength(0.3$V_o$) of the specimen. Experimental observations on punching failure pattern, peak lateral-load and story drift ratio at punching failure, and stiffness degradation were achieved and discussed in accordance with different column aspect ratio.

  • PDF