A novel precast concrete-encased steel composite beam, which can be abbreviated as PCES beam, is introduced in this paper. In order to investigate the shear behavior of this PCES beam, a test of eight full-scale PCES beam specimens was carried out, in which the specimens were subjected to positive bending moment or negative bending moment, respectively. The factors which affected the shear behavior, such as the shear span-to-depth aspect ratio and the existence of concrete flange, were taken into account. During the test, the load-deflection curves of the test specimens were recorded, while the crack propagation patterns together with the failure patterns were observed as well. From the test results, it could be concluded that the tested PCES beams could all exhibit ductile shear behavior, and the innovative shear connectors between the precast concrete and cast-in-place concrete, namely the precast concrete transverse diaphragms, were verified to be effective. Then, based on the shear deformation compatibility, a theoretical model for predicting the shear capacity of the proposed PCES beams was put forward and verified to be valid with the good agreement of the shear capacities calculated using the proposed method and those from the experiments. Finally, in order to facilitate the preliminary design in practical applications, a simplified calculation method for predicting the shear capacity of the proposed PCES beams was also put forward and validated using available test results.
Concrete-encased steel (CES) beam, in which structural steel is encased in a reinforced concrete (RC) section, is widely applied in high-rise buildings as transfer beams due to its high load-carrying capacity, great stiffness, and good durability. However, these CES beams are prone to shear failure because of the low shear span-to-depth ratio and the heavy load. Due to the high load-carrying capacity and the brittle failure process of the shear failure, the accurate strength prediction of CES beams significantly influences the assessment of structural safety. In current design codes, design formulas for predicting the shear strength of CES beams are based on the so-called "superposition method". This method indicates that the shear strength of CES beams can be obtained by superposing the shear strengths of the RC part and the steel shape. Nevertheless, in some cases, this method yields errors on the unsafe side because the shear strengths of these two parts cannot be achieved simultaneously. This paper clarifies the conditions at which the superposition method does not hold true, and the shear strength of CES beams is investigated using a compatible truss-arch model. Considering the deformation compatibility between the steel shape and the RC part, the method to obtain the shear strength of CES beams is proposed. Finally, the proposed model is compared with other calculation methods from codes AISC 360 (USA, North America), Eurocode 4 (Europe), YB 9082 (China, Asia), JGJ 138 (China, Asia), and AS/NZS 2327 (Australia/New Zealand, Oceania) using the available test data consisting of 45 CES beams. The results indicate that the proposed model can predict the shear strength of CES beams with sufficient accuracy and safety. Without considering the deformation compatibility, the calculation methods from the codes AISC 360, Eurocode 4, YB 9082, JGJ 138, and AS/NZS 2327 lead to excessively conservative or unsafe predictions.
Journal of the Korea institute for structural maintenance and inspection
/
v.23
no.4
/
pp.78-85
/
2019
This study targets SFRC hollow members with small depth under shear force and bending. To evaluate the effect of web width on shear strength of SFRC members, experiment and finite element analysis were conducted and compared with existing equations. The web width was planned to be 1/2 times and 2/3 times, and the shear span ratio was planned to be 1.5 times. In the shear test results, the maximum shear strength increased by 10.3 to 28.0% with the web width increased by 33%. When the overall depth of specimens was increased by 1.5 times, the shear strength of the specimen with a web width of 100mm was increased by 29.2%. On the other hand, specimen with the 150mm only increased by 11.3%. These results indicate that the smaller the web width, the greater the shear strength increase with the increase of depth. Also, the smaller the web width, the greater the contribution of steel fiber. It has been shown that the KCI code evaluates the shear strength of experiments as very safe side, and that the proposed formula of Shin et al. predicts the experimental strength relatively well. As the web width increases by 2, 3, and 6 times, the mean shear strength by FEA appears to be 1.18, 1.80, and 2.19 times respectively. This indicates that the shear strength does not increase in proportion to the increase in web width.
The mechanical behavior of prestressed concrete haunched beams (PSHBs) was investigated in depth using a finite element modeling technique in this study. The efficiency of finite element modeling was investigated in the first stage by taking into account a previous study from the literature. The first stage's findings suggested that finite element modeling might be preferable for modeling PSHBs. In the second stage of the research, a comprehensive parametric study was carried out to determine the effect of each parameter on PSHB load capacity, including haunch angle, prestress level, compressive strength, tensile reinforcement ratio, and shear span to depth ratio. PSHBs and prestressed concrete rectangular beams (PSRBs) were also compared in terms of capacity. Stochastic analysis was used in the third stage to define the uncertainty in PSHB capacity by taking into account uncertainty in geometric and material parameters. Standard deviation, coefficient of variation, and the most appropriate probability density function (PDF) were proposed as a result of the analysis to define the randomness of capacity of PSHBs. In the study's final section, a new equation was proposed for using symbolic regression to predict the load capacity of PSHBs and PSRBs. The equation's statistical results show that it can be used to calculate the capacity of PSHBs and PSRBs.
Over the past couple decades, externally bonded fiber reinforced polymer (FRP) composites have emerged as a repair and strengthening material for many concrete infrastructure applications. This paper presents an analytical investigation of the use of carbon FRP (CFRP) for a specific problem that occurs in concrete bridge girders wherein the girder ends are damaged by excessive exposure to deicing salts and numerous freezing/thawing cycles. A 3D finite element (FE) model of a full scale prestressed concrete (PC) I-girder is used to investigate the effect of damage to the cover concrete and stirrups in the end region of the girder. Parametric studies are performed using externally bonded CFRP shear laminates to determine the most effective repair schemes for the damaged end region under a short shear span-to-depth ratio. Experimental results on shear pull off tests of CFRP laminates that have undergone accelerated aging are used to calibrate a bond stress-slip model for the interface between the FRP and concrete substrate and approximate the reduced bond stress-slip properties associated with exposure to the environment that causes this type of end region damage. The results of these analyses indicate that this particular application of this material can be effective in recovering the original strength of PC bridge girders with damaged end regions, even after environmental aging.
Journal of the Korea institute for structural maintenance and inspection
/
v.7
no.4
/
pp.159-169
/
2003
In the ACI Code, the empirical equations governing deep beam design are based on low-strength concrete specimens with $f_{ck}$ in the range of 14 to 40MPa. As high-strength concrete(HSC) is becoming more and more popular, it is timely to evaluate the application of HSC deep beam. For the shear strength prediction of HSC deep beams, this paper proposed Softened Strut-and-Tie Model(SSTM) considered HSC and bending moment effect. The shear strength predictions of the proposed model, the Appendix A Strut-and-Tie Model of ACI 318-02, and Eq. of ACI 318-99 11.8 are compared with the experimental test results of 4 deep beams and the collected experimental data of 74 HSC deep beams, compressive strength in the range of 49~78MPa. The proposed SSTM performance consistently reproduced 74 HSC deep beam measured shear strength with reasonable accuracy for a wide range of concrete strength, shear span-depth ratio, and ratio of horizontal and vertical reinforcement.
Ahmed M. Sheta;Xing Ma;Yan Zhuge;Mohamed A. ElGawady;Julie E. Mills;El-Sayed Abd-Elaal
Steel and Composite Structures
/
v.46
no.1
/
pp.75-92
/
2023
The novel composite cold-formed steel (CFS)/engineered cementitious composites (ECC) beams have been recently presented. The new composite section exhibited superior structural performance as a flexural member, benefiting from the lightweight thin-walled CFS sections with improved buckling and torsional properties due to the restraints provided by thinlayered ECC. This paper investigated the shear performance of the new composite CFS/ECC section. Twenty-eight simply supported beams, with a shear span-to-depth ratio of 1.0, were assembled back-to-back and tested under a 3-point loading scheme. Bare CFS, composite CFS/ECC utilising ECC with Polyethylene fibres (PE-ECC), composite CFS/MOR, and CFS/HSC utilising high-strength mortar (MOR) and high-strength concrete (HSC) as replacements for PE-ECC were compared. Different failure modes were observed in tests: shear buckling modes in bare CFS sections, contact shear buckling modes in composite CFS/MOR and CFS/HSC sections, and shear yielding or block shear rupture in composite CFS/ECC sections. As a result, composite CFS/ECC sections showed up to 96.0% improvement in shear capacities over bare CFS, 28.0% improvement over composite CFS/MOR and 13.0% over composite CFS/HSC sections, although MOR and HSC were with higher compressive strength than PE-ECC. Finally, shear strength prediction formulae are proposed for the new composite sections after considering the contributions from the CFS and ECC components.
This paper presents the behavior of geopolymer concrete beams reinforced with glass fiber reinforced polymer (GFRP) bars. In the study, ordinary Portland cement concrete and geopolymer concrete beams having GFRP bars were prepared and tested under four-point loading. The load-deflection diagrams and load capacities of the tested beams were obtained. It was observed that the tested beams exhibited good ductility and significant deflection capacity. The results showed that increasing the tension GFRP reinforcement ratio caused enhancement in the strength capacity of geopolymer concrete beams. In addition, the tested beams were analyzed to obtain the load capacity and the load-deflection responses. The theoretical load-deflection curves and load bearing capacities have been predicted well with the test results. Parametric study has been performed to determine the influences of concrete strength, shear span to depth ratio (a/d) and reinforcement ratio on the behavior of geopolymer concrete beams longitudinally reinforced with GFRP bars. It was concluded that increasing concrete strength led to an increase in load capacity. Besides, the ultimate load increased as the reinforcement ratio increased. On the other hand, increasing a/d ratio reduced the ultimate load value of GFRP reinforced geopolymer concrete beams.
Journal of the Korea institute for structural maintenance and inspection
/
v.8
no.3
/
pp.149-158
/
2004
In this study, deep beam specimens are designed to have the effective shear span to depth ratio 1.0 and web opening within effective shear region. The purpose of this study is to investigate experimentally the shear strengthening effect between before failure and after failure upon using fiber sheets for RC deep beam with opening in web. The results can be summarized as follows; 1)When deep beams with web opening were failed in shear, their initial diagonal crack load and crack width were not influenced by their types of the arranged steel bars. 2)Deep beam with the horizontal reinforced bar was effective in the ultimate load of deep beam with web opening in shear failure 3)There were the approximate values between the experimental values and the analysis of finite element method. 4)The ultimate failure strengths of the repaired and strengthened specimens were increased about 34.4%~83.8% in comparison with specimens not to be strengthened.
Currently, social demands for long span building structures are increasing due to architectural planning purposes and economic efficiency. As a result, lighter board-type voiding materials were suggested. With the use of board-type voiding materials, a slab is able to become light weight and convenient. This process efficiently eliminates concrete where it is not required; considerably diminishing dead weight while maintaining the flexural strength of the slab. The reduction in concrete also allows for overall cost reductions and design flexibility. Also it can be ease with fixing the voided material that is composed of one body form. Although board-type voiding materials are ideal, the top and bottom concrete plates lack integrity. Because of this, test results show horizontal cracking towards the tops and bottoms of the concrete columns, or webs, connecting the slabs. The key to correcting this problem is to increase the shear strength. In order to increase the shear strength of the structure, horizontal shear area must increase. R70(100)-D-F has the largest horizontal shear area as it also shows stronger strength. As a result, shear strength ($V_{nh}$) is dependent on the horizontal shear area (N). $V_{nh}={\alpha}{\times}0.16{\sqrt{f_{ck}}}{\frac{{\pi}D^2}{4}}{\times}N({\alpha}=1.8125)$. The web columns have a shear span to depth ratio (a/d) that is less than 2; which classifies it as a deep beam. In this case, however, the shear strength of the deep beams may be as much as 2 to 3 times greater than that predicated conventional equations developed for members of normal proportions. As a result, ${\alpha}$ is suggested as an extra coefficient in the equation for shear strength ($V_{nh}$).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.