DOI QR코드

DOI QR Code

Evaluation of Shear Strength by Experiment and Finite Element Analysis of SFRC Hollow Members

SFRC 중공 부재의 실험 및 유한요소 해석에 의한 전단강도 평가

  • 김성은 (한밭대학교 건축공학과 대학원) ;
  • 정재원 (한밭대학교 건축공학과 대학원) ;
  • 김승훈 (한밭대학교 건축공학과)
  • Received : 2019.02.12
  • Accepted : 2019.03.07
  • Published : 2019.07.01

Abstract

This study targets SFRC hollow members with small depth under shear force and bending. To evaluate the effect of web width on shear strength of SFRC members, experiment and finite element analysis were conducted and compared with existing equations. The web width was planned to be 1/2 times and 2/3 times, and the shear span ratio was planned to be 1.5 times. In the shear test results, the maximum shear strength increased by 10.3 to 28.0% with the web width increased by 33%. When the overall depth of specimens was increased by 1.5 times, the shear strength of the specimen with a web width of 100mm was increased by 29.2%. On the other hand, specimen with the 150mm only increased by 11.3%. These results indicate that the smaller the web width, the greater the shear strength increase with the increase of depth. Also, the smaller the web width, the greater the contribution of steel fiber. It has been shown that the KCI code evaluates the shear strength of experiments as very safe side, and that the proposed formula of Shin et al. predicts the experimental strength relatively well. As the web width increases by 2, 3, and 6 times, the mean shear strength by FEA appears to be 1.18, 1.80, and 2.19 times respectively. This indicates that the shear strength does not increase in proportion to the increase in web width.

본 연구는 전단력과 휨을 받는 춤이 작은 중공 SFRC 부재를 대상으로 중공에 따른 웨브폭이 부재의 전단강도에 미치는 영향을 평가하고자 실험 및 해석을 실시하고 기존식과 비교 분석하였다. 전체폭에 비하여 웨브폭은 1/2배, 2/3배로 선정하였으며, 전단경간비는 1.5로 계획하였다. 전단실험 결과, 웨브폭이 33% 증가함에 따라 최대전단강도는 10.3~28.0% 증가하였다. 실험체의 전체춤이 1.5배 증가함에 웨브폭이 100mm인 실험체는 전단강도가 29.2% 증가한 반면, 150mm인 실험체는 11.3% 증가에 그쳐, 웨브폭이 적을수록 춤의 증가에 따른 전단강도 증가율이 큰 것으로 나타났다. 이를 볼 때, 웨브폭이 적을수록 강섬유의 기여도가 큰 것으로 사료된다. KCI 기준식이 중공 슬래브의 전단강도를 매우 안전측으로 평가하고 있으며, Shin et al.의 제안식이 실험강도를 비교적 잘 예측하는 것으로 나타났다. 비선형 유한요소 해석으로부터 웨브폭이 2, 3, 6배 증가함에 따라 해석부재의 평균 전단강도는 각각 1.18배, 1.80배, 2.19배로 나타나, 웨브폭의 증가에 비례하여 전단강도가 증가하지 않는 것으로 나타났다.

Keywords

References

  1. Ashour, S. A., Hasanain, G. S., and Wafa, F. F. (1992), Shear behavior of high-strength fiber reinforced concrete beams, Structural Journal, 89(2), 176-184.
  2. Ashour, S. A., Hasanain, G. S., and Wafa, F. F. (1992), Shear behavior of high-strength fiber reinforced concrete beams, Structural Journal, 89(2), 176-184.
  3. Choi, S. Y., Yun, K. K., Kim, Y. B., and Kang, M. S. (2010), Nonlinear Flexural Analysis of RC Beam Rehabilitated by Very-Early Strength Latex-Modified Concrete, Journal of the Korea Academia-Industrial Cooperation Society, 11(11), 4635-4642. https://doi.org/10.5762/KAIS.2010.11.11.4635
  4. Chung, J. H., Lee, S. C., Choi, C. S., and Choi, H. K. (2012), One-way shear strength of donut type biaxial hollow slab considered hollow shapes and materials, Journal of the Korea Concrete Institute, 24(4), 391-398. https://doi.org/10.4334/JKCI.2012.24.4.391
  5. De Normalisation, C. E. (2004), Eurocode 2: Design of concrete structures-Part 1-1: General rules and rules for buildings, Brussels, Belgium.
  6. Dinh, H. H., Parra-Montesinos, G. J., and Wight, J. K. (2010), Shear Behavior of Steel Fiber-Reinforced Concrete Beams without Stirrup Reinforcement, Structural Journal, 107(05), 597-606.
  7. Han, S. H., Rew, Y. H., Park, Y. M., Kim, J. S., andIm, J. H. (2011), Flexural and Shear Strength of the Void Transfer Slabs, Journal of the Architectural Institute of Korea, 27(2), 11-18.
  8. Kang, J. W., Lim, J. H., Chae, S. H., Kim, G. C., and Seok, K. Y. (2012), A Study on the Dynamic Analysis of One-way Hollow Slab Using Equivalent Plate Element, Journal of the Computational Structural Engineering Institute of Korea, 25(5), 447-454. https://doi.org/10.7734/COSEIK.2012.25.5.447
  9. Kang, S. M., Kim, J. W., Choi, K. K., and Park, H. G. (2016), Shear behavior investigation of biaxial hollow slabs through non-linear FE analysis, Journal of Architectural Institute of Korea Structure and Construction, 32(12), 3-13. https://doi.org/10.5659/JAIK_SC.2016.32.12.3
  10. Kang, S. T., Hong, K. N., Han, S. H., and Kim, S. W. (2009), The Effect of Fiber Volume Fraction on the Tension Softening Behavior of Steel Fiber-Reinforced Ultra High Strength Concrete, Journal of the Korea Concrete Institute, 21(1), 13-20. https://doi.org/10.4334/JKCI.2009.21.1.013
  11. KCI Committee. (2012), Concrete Design Code and Commentary, Korea Concrete Institute.
  12. Khuntia, M., Stojadinovic, B., and Goel, S. C. (1999), Shear strength of normal and high-strength fiber reinforced concrete beams without stirrups, Structural Journal, 96(2), 282-289.
  13. Kim, C. G., Park, H. G., Hong, G. H., and Kang, S. M. (2015), Evaluation on Shear Contribution of Steel Fiber Reinforced Concrete in Place of Minimum Shear Reinforcement, Journal of the Korea Concrete Institute, 27(6), 603-613. https://doi.org/10.4334/JKCI.2015.27.6.603
  14. Kim, G. C., Seok, K. Y., and Kang, J. W. (2013), Evaluation of Flexural Performance of One-Way Voided Slabs, Journal of the Architectural Institute of Korea Structure and Construction, 29(8), 11-18. https://doi.org/10.5659/JAIK_SC.2013.29.8.11
  15. Kim, K. S. (2008), An Experimental and Analytical Study on Shear Transfer for Safety Evaluation of Concrete Structure, Journal of the Korean Society of Safety, 23(3), 42-50.
  16. Kim, K. S., Kim, N. W., Lee, Y. W., and Bae, J. S. (1995), The Effects of Fibers on the Fracture Toughness and Strength of Concrete, Journal of The Korean Society of Civil Engineers, 15(1), 83-83.
  17. Kwak, Y. K., Eberhard, M. O., Kim, W. S., and Kim, J. (2002), Shear strength of steel fiber-reinforced concrete beams without stirrups, ACI Structural Journal, 99(4), 530-538.
  18. Lee, H. P., Choun, Y. S., and Seo, J. M. (2005), A study on the standard 8-node solid finite element for nonlinear analysis of reinforced concrete containment, Korea Atomic Energy Research Institute.
  19. Moon, J. H., and Oh, Y. H. (2014), Experiment and Nonlinear Analysis of DH Beams with Steel Form, Journal of the Korea Concrete Institute, 26(2), 171-179. https://doi.org/10.4334/JKCI.2014.26.2.171
  20. Narayanan, R., and Darwish, I. Y. S. (1987), Use of steel fibers as shear reinforcement, Structural Journal, 84(3), 216-227.
  21. Narayanan, R., and Darwish, I. Y. S. (1987), Use of steel fibers as shear reinforcement, Structural Journal, 84(3), 216-227.
  22. Romualdi, J. P., and Mandel, J. A. (1964), Tensile strength of concrete affected by uniformly distributed and closely spaced short lengths of wire reinforcement, In Journal Proceedings, 61(6), 657-672.
  23. Sharma, A. K. (1986), Shear strength of steel fiber reinforced concrete beams, In Journal Proceedings, 83(4), 624-628.
  24. Shin, S. W., Oh J. L., Lee, K. S., and Kwon, Y. H. (1991), A Study on Shear Behavior of High Strength Concrete Beams, Journal of the Architectural Institute of Korea, 11(1), 411-416.
  25. Standard, A. A. (2011), Building Code Requirements for Structural Concrete (ACI 318-11), In American Concrete Institute.
  26. Standard, C. S. A. (2004), A23. 3-04: Design of concrete structures, Mississauga: Canadian Standards Association.
  27. Swaddiwudhipong, S., Lu, H. R., and Wee, T. H. (2003), Direct tension test and tensile strain capacity of concrete at early age, Cement and Concrete Research, 33(12), 2077-2084. https://doi.org/10.1016/S0008-8846(03)00231-X