• Title/Summary/Keyword: shear retrofitting

Search Result 111, Processing Time 0.02 seconds

A Study on the Structural Performance of Retrofitted RC Shear Walls with An Opening (피해를 입은 전단벽의 보강 후 구조성능 평가)

  • Kim, Hyun-Min;Choi, Youn-Cheul;Choi, Chang-Sik;Lee, Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.234-237
    • /
    • 2006
  • A series of three shear wall specimens was tested under constant axial stress and reversed cyclic lateral loading in order to evaluate the seismic retrofit that had been proposed for the shear wall with the opening induced by remodeling. One of these specimens was tested in the as-built condition and the other two were retrofitted prior to testing. The retrofit involved the use of carbon fiber sheets and steel plates (thickness of 3mm) over the entire face of the wall. The test results show that the ultimate failure modes of the specimens were found to be shear fracture of the wall around the opening and two difference types of retrofitting strategy make the different effects of a rise in the strength of each specimen.

  • PDF

Seismic shear strengthening of R/C beams and columns with expanded steel meshes

  • Morshed, Reza;Kazemi, Mohammad Taghi
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.333-350
    • /
    • 2005
  • This paper presents results of an experimental study to evaluate a new retrofit technique for strengthening shear deficient short concrete beams and columns. In this technique a mortar jacket reinforced with expanded steel meshes is used for retrofitting. Twelve short reinforced concrete specimens, including eight retrofitted ones, were tested. Six specimens were tested under a constant compressive axial force of 15% of column axial load capacity based on original concrete gross section, $A_g$, and the concrete compressive strength, ${f_c}^{\prime}$. Main variables were the spacing of ties in original specimens and the volume fraction of expanded metal in jackets. Original specimens failed before reaching their nominal calculated flexural strength, $M_n$, and had very poor ductility. Strengthened specimens reached their nominal flexural strength and had a ductility capacity factor of up to 8 for the beams and up to 5.5 for the columns. Based on the test results, it can be concluded that expanded steel meshes can be used effectively to strengthen shear deficient concrete members.

Shear strength of Cast-In Place R/C Infill Shear Wall (현장타설 철근콘크리트 끼움벽의 전단강도)

  • Choi Chang Sik;Lee Hye Yeon;Kim Sun Woo;Yun Hyun Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.247-250
    • /
    • 2005
  • The aim of Cast-In-Place(CIP) method is to upgrade the strength, ductility and stiffness of the structure to the required level. The main objective of this research is to investigate the shear and the flexural strength of reinforced concrete frames infilled with CIP reinforced concrete wall. For this three 1/3 scale, one-bay, one story reinforced concrete infill wall were tested under reversed cyclic loading simulating the seismic effect. Results of tests of CIP shear wall were reviewed to evaluate the current design provisions and to establish the feasible retrofitting method.

  • PDF

Experimental investigation on optimal shear strengthening of RC beams using NSM GFRP bars

  • Ramezanpour, M.;Morshed, R.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.45-52
    • /
    • 2018
  • Several techniques have been developed for shear strengthening of reinforced concrete (RC) members by using fiber reinforced polymer (FRP) composites. However, debonding of FRP retrofits from concrete substrate still deemed as a challenging concern in their application which needs to be scrutinized in details. As a result, this paper reports on the results of an experimental investigation on shear strengthening of RC beams using near surface mounted (NSM) FRP reinforcing bars. The main objective of the experimentation was increasing the efficiency of shear retrofits by precluding/postponing the premature debonding failure. The experimental program was comprised of six shear deficient RC beams. The test parameters include the FRP rebar spacing, inclination angle, and groove shape. Also, an innovative modification was introduced to the conventional NSM technique and its efficiency was evaluated by experimental observation and measurement. The results testified the efficiency of glass FRP (GFRP) rebars in increasing the shear strength of the test specimens retrofitted using conventional NSM technique. However, debonding of FRP bars impeded exploiting all retrofitting advantages and induced a premature shear failure. On the contrary, application of the proposed modified NSM (MNSM) technique was not only capable of preventing the premature debonding of FRP bars, but also could replace the failure mode of specimen from the brittle shear to a ductile flexural failure which is more desirable.

Experimental study on seismic behavior of reinforced concrete column retrofitted with prestressed steel strips

  • Zhang, Bo;Yang, Yong;Wei, Yuan-feng;Liu, Ru-yue;Ding, Chu;Zhang, Ke-qiang
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1139-1155
    • /
    • 2015
  • In this study, a new retrofitting method for improving the seismic performance of reinforced concrete column was presented, in which prestressed steel strips were utilized as retrofitting stuff to confine the reinforced concrete column transversely. In order to figure out the seismic performance of concrete column specimen retrofitted by such prestressed steel strips methods, a series of quasi-static tests of five retrofitted specimens and two unconfined column specimen which acted as control specimens were conducted. Based on the test results, the seismic performance including the failure modes, hysteresis performance, ductility performance, energy dissipation and stiffness degradation of all these specimens were fully investigated and analyzed. And furthermore the influences of some key parameters such as the axial force ratios, shear span ratios and steel strips spacing on seismic performance of those retrofitted reinforced concrete column specimens were also studied. It was shown that the prestressed steel strips provided large transverse confining effect on reinforced concrete column specimens, which resulted in improving the shearing bearing capacity, ductility performance, deformation capacity and energy dissipation performance of retrofitted specimens effectively. In comparison to the specimen which was retrofitted by the carbon fiber reinforced plastics (CFRP) strips method, the seismic performance of the specimens retrofitted by the prestressed steel strips was a bit better, and with much less cost both in material and labor. From this research results, it can be concluded that this new retrofitting method is really useful and has significant advantages both in saving money and time over some other retrofitting methods.

Experimental Study on the Retrofit Method to Improve the Structural Capacity of Reinforced Concrete Shear Wall (철근콘크리트 전단벽의 구조성능개선을 위한 보강방안에 관한 실험적 연구)

  • Ha, Gee-Joo;Seo, Soo-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.79-86
    • /
    • 2008
  • Four RC shear wall specimens with a/d of 2.2 are designed. And a flexural retrofitting is performed for one specimen by both enlarging wall section and adding additional vertical reinforcements. Also the effectivity of jaketting wall sides is evaluated for the two methods using only steel plate or welded wire mesh with enlargement of section. Cyclic loads are applied to the retrofitted specimens according to the loading history proposed by ACI under constant axial force. Test result showed that the strength and ductility of specimen were improved where the section was enlarged after the installation of additional vertical reinforcements. Confining the ends of wall by U shape W.W.F. with enlargement of section showed most excellent structural capacity regarding to the strength and ductility. Retrofitting by using steel plate was much effective not only to protect the abrupt decrease of strength after yield but also to improve the deformation capacity.

Evaluation of EC8 and TBEC design response spectra applied at a region in Turkey

  • Yusuf Guzel;Fidan Guzel
    • Earthquakes and Structures
    • /
    • v.25 no.3
    • /
    • pp.199-208
    • /
    • 2023
  • Seismic performance analysis is one of the fundamental steps in the design of new or retrofitting buildings. In the seismic performance analysis, the adapted spectral acceleration curve for a given site mainly governs the seismic behavior of buildings. Since every soil site (class) has a different impact on the spectral accelerations of input motions, different spectral acceleration curves have to be involved for every soil class that the building is located on top of. Modern seismic design codes (e.g., Eurocode 8, EC8, or Turkish Building Earthquake Code, TBEC) provide design response spectra for all the soil classes to be used in the building design or retrofitting. This research aims to evaluate the EC8 and TBEC based design response spectra using the spectra of real earthquake input motions that occurred (and were recorded at only soil classes A, B and C, no recording is available at soil class D) in a specific area in Turkey. It also conducts response spectrum analyses of 5, 10 and 13 floor reinforced concrete building models under EC8, TBEC and actual spectral response curves. The results indicate that the EC8 and especially TBEC given design response spectra cannot be able to represent the mean actual spectral acceleration curves at soil classes A, B and C. This is particularly observed at periods higher than 0.3 s, 0.42 s and 0.55 s for the TBEC design response spectra, 0.54 s, 0.65 s and 0.84 s for the EC8 design response spectra at soil classes A, B and C, respectively. This is also reflected to the shear forces of three building models, as actual spectral acceleration curves lead to the highest shear forces, followed by the shear forces obtained from EC8 and, then, the TBEC design response spectra.

Evaluation on Seismic Performance of Existing Frame retrofitted with RC CIP Infill Walls (기존 골조의 내진성능 향상을 위한 철근콘크리트 현장타설 끼움벽의 보강성능 평가)

  • Kim, Sun-Woo;Yun, Hyun-Do;Kim, Yun-Su;Ji, Sang-Kyu
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.53-56
    • /
    • 2008
  • A reinforced concrete (RC) cast-in-place (CIP) infill wall retrofitting method may provide an improved seismic performance and economical efficiency for the non-ductile rahmen structures. In this study, four one story-one bay non-ductile frame were constructed and retrofitted with CIP infill wall to evaluate seismic performance of CIP infill wall-frame. From the test results, infill wall-frame exhibited a marked increase in shear strength compared to non-ductile RC frame specimen. But the ductility and story-drift at maximum load were decreased when shear strength of infill wall larger than that of existing RC frame. Therefore, it is confirmed that adequate reinforcement detail is required to assure sufficient seismic performance.

  • PDF

Rehabilitation of RC structural elements: Application for continuous beams bonded by composite plate under a prestressing force

  • Abderezak, Rabahi;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • v.11 no.2
    • /
    • pp.91-109
    • /
    • 2022
  • This paper presents a closed-form higher-order analysis of interfacial shear stresses in RC continuous beams strengthened with bonded prestressed laminates. For retrofitting reinforced concrete continuous beams is to bond fiber reinforced prestressed composite plates to their tensile faces. An important failure mode of such plated beams is the debonding of the composite plates from the concrete due to high level of stress concentration in the adhesive at the ends of the composite plate. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the RC continuous beams strengthened with bonded prestressed laminates. The theoretical predictions are compared with other existing solutions. A parametric study has been conducted to investigate the sensitivity of interface behavior to parameters such as laminate stiffness and the thickness of the laminate where all were found to have a marked effect on the magnitude of maximum shear and normal stress in the composite member.

Shear Strength of Retrofitted RC Squat Wall by Additional Boundary Element (단부 증타 보강된 RC 전단벽체의 전단강도)

  • Yi, You-Sun;Hong, Sung-Gul;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.489-499
    • /
    • 2015
  • This study suggested shear strength prediction model for retrofitted single-layered RC squat wall by providing column element as additional boundary element. This model revised existing shear strength prediction model of shear wall to consider detail and shear deformation capacity of column by assuming the length that concentrated shear deformation of the column is occurred. It was able to suggest additional compatibility condition related to shear strain of retrofitted of retrofitted shear wall at the ultimate state by using this length. Therefore, this study proposed a flow chart for predicting shear strength of the retrofitted shear wall considering this additional condition. Moreover, this study also proposed a method for predicting initial stiffness of the retrofitted shear wall by transforming the wall's resisting mechanism against to lateral load to a single diagonal strut mechanism. The proposed methods can predict shear strength and initial stiffness of not only the retrofitted shear wall of this study, also infilled RC shear wall in RC frame.