• 제목/요약/키워드: shear plate

검색결과 1,766건 처리시간 0.025초

Bond-slip effect in steel-concrete composite flexural members: Part 2 - Improvement of shear stud spacing in SCP

  • Lee, WonHo;Kwak, Hyo-Gyoung;Kim, Joung Rae
    • Steel and Composite Structures
    • /
    • 제32권4호
    • /
    • pp.549-557
    • /
    • 2019
  • The use of shear studs usually placed in the form of mechanical shear connectors makes it possible to adopt composite steel-concrete structures in various structures, and steel-concrete plate composite (SCP) is being seriously considered for the installation of storage tanks exposed to harsh environments. However, manufacturing of SCP must be based on the application of existing design guidelines which require very close arrangement of shear studs. This means that the direct application of current design guidelines usually produces very conservative results and close arrangement of shear studs precludes pouring concrete within exterior steel faceplates. In this light, an improved guideline to determine the stud spacing should be introduced, and this paper proposes an improved ratio of the stud spacing to the thickness of steel plate on the basis of numerous parametric studies to evaluate the relative influence of the stud spacing on the stability of the SCP.

Buckling analysis of functionally graded hybrid composite plates using a new four variable refined plate theory

  • Fekrar, A.;El Meiche, N.;Bessaim, A.;Tounsi, A.;Adda Bedia, E.A.
    • Steel and Composite Structures
    • /
    • 제13권1호
    • /
    • pp.91-107
    • /
    • 2012
  • In this research, mechanical buckling of hybrid functionally graded plates is considered using a new four variable refined plate theory. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The plate properties are assumed to be varied through the thickness following a simple power law distribution in terms of volume fraction of material constituents. Governing equations are derived from the principle of minimum total potential energy. The closed-form solution of a simply supported rectangular plate subjected to in-plane loading has been obtained by using the Navier method. The effectiveness of the theories is brought out through illustrative examples.

Effect of stiffeners on steel plate shear wall systems

  • Rahmzadeh, Ahmad;Ghassemieh, Mehdi;Park, Yeonho;Abolmaali, Ali
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.545-569
    • /
    • 2016
  • Stiffeners have widely been used in lateral load resisting systems to improve the buckling stability of shear panels in steel frames. However, due to major differences between plate girders and steel plate shear walls (SPSWs), use of plate girder equations often leads to uneconomical and, in some cases, incorrect design of stiffeners. Hence, this paper uses finite element analysis (FEA) to describe the effect of the rigidity and arrangement of stiffeners on the buckling behavior of plates. The procedures consider transverse and/or longitudinal stiffeners in various practical configurations. Subsequently, curves and formulas for the design of stiffeners are presented. In addition, the influence of stiffeners on the inward forces subjected to the boundary elements and the tension field angle is investigated as well. The results indicate that the effective application of stiffeners in SPSW systems not only improves the structural behavior, such as stiffness, overall strength and energy absorption, but also leads to a reduction of the forces that are exerted on the boundary elements.

Effect of shear stresses on the deflection and optimal configuration of a rectangular FGM structure

  • Ayoub El Amrani;Hafid Mataich;Jaouad El-Mekkaoui;Bouchta El Amrani
    • Coupled systems mechanics
    • /
    • 제12권4호
    • /
    • pp.391-407
    • /
    • 2023
  • This paper presents a static study of a rectangular functional graded material (FGM) plate, simply supported on its four edges, adopting a refined higher order theory that looks for, only,four unknowns,without taking into account any corrective factor of the deformation energy with the satisfaction of the zero shear stress conditions on the upper and lower faces of the plate. We will have determined the contribution of these stresses in the transverse deflection of the plate, as well as their effects on the axial stress within the interfaces between the layers(to avoid any problem of imperfections such as delamination) and on the top and bottom edges of the plate in order to take into account the fatigue phenomenon when choosing the distribution law of the properties used during the design of the plate. A numerical statement, in percentage, of the contribution of the shear effect is made in order to show the reliability of the adopted theory. We will also have demonstrated the need to add the shear effect when the aspect ratio is small or large. Code routines are programmed to obtain numerical results illustrating the validity of the model proposed in the theory compared to those available in the literature.

Static and stress analyses of bi-directional FG porous plate using unified higher order kinematics theories

  • Mohamed, Salwa;Assie, Amr E.;Mohamed, Nazira;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.305-330
    • /
    • 2022
  • This article aims to investigate the static deflection and stress analysis of bi-directional functionally graded porous plate (BDFGPP) modeled by unified higher order kinematic theories to include the shear stress effects, which not be considered before. Different shear functions are described according to higher order models that satisfy the zero-shear influence at the top and bottom surfaces, and hence refrain from the need of shear correction factor. The material properties are graded through two spatial directions (i.e., thickness and length directions) according to the power law distribution. The porosities and voids inside the material constituent are described by different cosine functions. Hamilton's principle is implemented to derive the governing equilibrium equation of bi-directional FG porous plate structures. An efficient numerical differential integral quadrature method (DIQM) is exploited to solve the coupled variable coefficients partial differential equations of equilibrium. Problem validation and verification have been proven with previous prestigious work. Numerical results are illustrated to present the significant impacts of kinematic shear relations, gradation indices through thickness and length, porosity type, and boundary conditions on the static deflection and stress distribution of BDFGP plate. The proposed model is efficient in design and analysis of many applications used in nuclear, mechanical, aerospace, naval, dental, and medical fields.

래티스 철근을 이용한 무량판-기둥 접합부의 전단보강 (Shear Reinforcement for Flat Plate-Column Connections Using Lattice Bars)

  • 안경수;박홍근
    • 콘크리트학회논문집
    • /
    • 제17권2호
    • /
    • pp.191-200
    • /
    • 2005
  • 무량판 구조의 슬래브-기둥 접합부는 취성적인 전단유형으로 파괴되며, 이는 전 구조물의 붕괴를 유발할 수 있다. 본 연구에서는 새로운 전단보강방법으로서 래티스 철근을 이용한 전단보강방법을 개발하였다. 실험연구를 실시하여 래티스 전단보강 실험체와 무보강 실험체의 접합부 전단강도 및 연성도를 비교하였다. 실험결과 래티스 철근으로 전단보강한 실험체는 전단보강하지 않은 실험체에 비해 평균적으로 강도면에서 1.37배, 연성도면에서 9.16배 증가하였다. 이는 래티스 철근이 무량판 구조의 전단보강재로서 전단강도와 연성도 측면에서 매우 효과적인 보강방법임을 입증하고 있으며, 현재 미국에서 접합부 전단보강재로 널리 사용되고 있는 스터드레일 전단보강보다 연성능력이 훨씬 우수한 것으로 나타났다. 또한 실험결과에 근거하여 래티스전단보강의 강도평가방법을 개발하였다.

An efficient partial mixed finite element model for static and free vibration analyses of FGM plates rested on two-parameter elastic foundations

  • Lezgy-Nazargah, M.;Meshkani, Z.
    • Structural Engineering and Mechanics
    • /
    • 제66권5호
    • /
    • pp.665-676
    • /
    • 2018
  • In this study, a four-node quadrilateral partial mixed plate element with low degrees of freedom (dofs) is developed for static and free vibration analysis of functionally graded material (FGM) plates rested on Winkler-Pasternak elastic foundations. The formulation of the presented finite element model is based on a parametrized mixed variational principle which is developed recently by the first author. The presented finite element model considers the effects of shear deformations and normal flexibility of the FGM plates without using any shear correction factor. It also fulfills the boundary conditions of the transverse shear and normal stresses on the top and bottom surfaces of the plate. Beside these capabilities, the number of unknown field variables of the plate is only six. The presented partial mixed finite element model has been validated through comparison with the results of the three-dimensional (3D) theory of elasticity and the results obtained from the classical and high-order plate theories available in the open literature.

Axisymmetric bending of a circular plate with symmetrically varying mechanical properties under a concentrated force

  • Magnucki, Krzysztof;Stawecki, Wlodzimierz;Lewinski, Jerzy
    • Steel and Composite Structures
    • /
    • 제34권6호
    • /
    • pp.795-802
    • /
    • 2020
  • The subject of the paper is a circular plate with symmetrically thickness-wise varying mechanical properties. The plate is simply supported and carries a concentrated force located in its centre. The axisymmetric bending problem of the plate with consideration of the shear effect is analytically and numerically studied. A nonlinear function of deformation of the straight line normal to the plate neutral surface is assumed. Two differential equations of equilibrium based on the principle of stationary potential energy are obtained. The system of equations is analytically solved and the maximum deflections and shear coefficients for example plates are derived. Moreover, the maximum deflections of the plates are calculated numerically (FEM), for comparison with the analytical results.

Experimental study on shear behavior of I-girder with concrete-filled tubular flange and corrugated web

  • Shao, Y.B.;Wang, Y.M.
    • Steel and Composite Structures
    • /
    • 제22권6호
    • /
    • pp.1465-1486
    • /
    • 2016
  • Conventional plate I-girders are sensitive to local buckling of the web when they are subjected mainly to shear action because the slenderness of the web in out-of-plane direction is much bigger. The local buckling of the web can also cause the distorsion of the plate flange under compression as a thin-walled plate has very low torsional stiffness due to its open section. A new I-girder consisted of corrugated web, a concrete-filled rectangular tubular flange under compression and a plate flange under tension is presented to improve its resistance to local buckling of the web and distorsion of the flat plate flange under compression. Experimental tests on a conventional plate I-girder and a new presented I-girder are conducted to study the failure process and the failure mechanisms of the two specimens. Strain developments at some critical positions, load-lateral displacement curves, and load-deflection curves of the two specimens have all be measured and analyzed. Based on these results, the failure mechanisms of the two kinds of I-girders are discussed.

Non-classical plate model for single-layered graphene sheet for axial buckling

  • Safaei, Babak;Khoda, Farzad Hamed;Fattahi, A.M.
    • Advances in nano research
    • /
    • 제7권4호
    • /
    • pp.265-275
    • /
    • 2019
  • In this work, the effect of size on the axial buckling behavior of single-layered graphene sheets embedded in elastic media is studied. We incorporate Eringen's nonlocal elasticity equations into three plate theories of first order shear deformation theory, higher order shear deformation theory, and classical plate theory. The surrounding elastic media are simulated using Pasternak and Winkler foundation models and their differences are evaluated. The results obtained from different nonlocal plate theories include the values of Winkler and Pasternak modulus parameters, mode numbers, nonlocal parameter, and side lengths of square SLGSs. We show here that axial buckling behavior strongly depends on modulus and nonlocal parameters, which have different values for different mode numbers and side lengths. In addition, we show that in different nonlocal plate theories, nonlocality is more influential in first order shear deformation theory, especially in certain range of nonlocal parameters.