• 제목/요약/키워드: shear mode

검색결과 1,278건 처리시간 0.035초

강판 및 유리섬유쉬트로 보강된 철근콘크리트 보의 전단보강 효과에 관한 실험 연구 (An Experimental Study on Shear-Strengthening Effect of Reinforced Concrete Beams by Steel Plates and GFS)

  • 최현구;오성영;김상식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.739-744
    • /
    • 2000
  • The aim of this research is to investigate and to compare the shear strengthening effects of steel plates and glass fiber sheets(GFS). Shear damaged beams were repaired by steel plates and GFS. Thickness of steel plates and strengthening type of GFS were taken as the parameters. With loading, the development and propagation of cracks, failure mode and deformation of strengthening materials were checked. The ultimate load was compared with formulas proposed by previous researchers.

  • PDF

전단변형이 고려되는 1차원 봉요소를 사용한 철근콘크리트 보의 비선형 유한요소해석 (Nonlinear Finite Element analysis of Reinforced Concrete Beam using 1-D element with Shear Deformation)

  • 전영배;유영화;이준희;신현목
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.481-486
    • /
    • 1997
  • In the paper, a simplified method for nonlinear analysis of reinforced concrete structures is presented, which is based on timeoshenko beam theory and constitutive equations that are given by the relation of average stress and average strain for concrete and reinforcing bars. Especially, this method consider shear deformation and determine the failure mode. In this paper, 1-D beam element model and program considering shear deformation are suggested. In addition, program procedure is presented briefly and the results are plotted with test examples.

  • PDF

ON HOMOGENEOUS SHEAR FLOWS WITH BOTTOM CROSS SECTION

  • S. LAVANYA;V. GANESH;G. VENKATA RAMANA REDDY
    • Journal of applied mathematics & informatics
    • /
    • 제41권5호
    • /
    • pp.1071-1084
    • /
    • 2023
  • We consider inviscid, incompressible homogeneous shear flows of variable cross section known as extended Rayleigh problem. For this extended Rayleigh problem, we derived instability region which intersect with semi-circle instability region under some condition. Also we derived condition for stability, upper bound for amplification factor and growth rate of an unstable mode.

Seismic performance of reinforced engineered cementitious composite shear walls

  • Li, Mo;Luu, Hieu C.;Wu, Chang;Mo, Y.L.;Hsu, Thomas T.C.
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.691-704
    • /
    • 2014
  • Reinforced concrete (RC) shear walls are commonly used for building structures to resist seismic loading. While the RC shear walls can have a high load-carrying capacity, they tend to fail in a brittle mode under shear, accompanied by forming large diagonal cracks and bond splitting between concrete and steel reinforcement. Improving seismic performance of shear walls has remained a challenge for researchers all over the world. Engineered Cementitious Composite (ECC), featuring incredible ductility under tension, can be a promising material to replace concrete in shear walls with improved performance. Currently, the application of ECC to large structures is limited due to the lack of the proper constitutive models especially under shear. In this paper, a new Cyclic Softening Membrane Model for reinforced ECC is proposed. The model was built upon the Cyclic Softening Membrane Model for reinforced concrete by (Hsu and Mo 2010). The model was then implemented in the OpenSees program to perform analysis on several cases of shear walls under seismic loading. The seismic response of reinforced ECC compared with RC shear walls under monotonic and cyclic loading, their difference in pinching effect and energy dissipation capacity were studied. The modeling results revealed that reinforced ECC shear walls can have superior seismic performance to traditional RC shear walls.

Experimental investigation on shear capacity of partially prefabricated steel reinforced concrete columns

  • Yang, Yong;Chen, Yang;Zhang, Jintao;Xue, Yicong;Liu, Ruyue;Yu, Yunlong
    • Steel and Composite Structures
    • /
    • 제28권1호
    • /
    • pp.73-82
    • /
    • 2018
  • This paper experimentally and analytically elucidates the shear behavior and shear bearing capacity of partially prefabricated steel reinforced concrete (PPSRC) columns and hollow partially prefabricated steel reinforced concrete (HPSRC) columns. Seven specimens including five PPSRC column specimens and two HPSRC column specimens were tested under static monotonic loading. In the test, the influences of shear span aspect ratio and difference of cast-in-place concrete strength on the shear behavior of PPSRC and HPSRC columns were investigated. Based on the test results, the failure pattern, the load-displacement behavior and the shear capacity were focused and analyzed. The test results demonstrated that all the column specimens failed in shear failure mode with high bearing capacity and good deformability. Smaller shear span aspect ratio and higher strength of inner concrete resulted in higher shear bearing capacity, with more ductile and better deformability. Furthermore, calculation formula for predicting the ultimate shear capacity of the PPSRC and HPSRC columns were proposed on the basis of the experimental results.

PCB 표면처리에 따른 Sn-1.2Ag-0.7Cu-0.4In 무연솔더 접합부의 기계적 신뢰성에 관한 연구 (Effects of PCB Surface Finishes on Mechanical Reliability of Sn-1.2Ag-0.7Cu-0.4In Pb-free Solder Joint)

  • 김성혁;김재명;유세훈;박영배
    • 마이크로전자및패키징학회지
    • /
    • 제19권4호
    • /
    • pp.57-64
    • /
    • 2012
  • 표면처리에 따른 Sn-1.2Ag-0.7Cu-0.4In 솔더범프의 접합 강도 평가를 위하여 전단 속도 및 열처리 시간에 따른 볼 전단강도 시험을 실시하였다. 전반적으로, 전단속도가 증가함에 따라 전단강도는 증가하였지만 인성은 감소하는 경향을 나타내었다. 파괴모드 관찰 결과, 전단 속도가 증가함에 따라 파괴모드의 경우, ENIG(electroless nickel immersion gold) 처리는 취성파괴가 대부분 지배적으로 존재하였고, OSP(organic solderability preservative) 처리는 pad open이 주로 발생하였다. 또한, 500 mm/s의 고속전단시험에서는 열처리 시간이 증가함에 따라 표면처리별 전단강도와 인성 값 모두 감소하는 경향을 보였다. ENIG 표면처리가 OSP 표면처리 보다 좋은 접합강도 특성을 보이는 것은 솔더범프 계면의 금속간화합물의 물성 및 두께와 밀접한 연관이 있는 것으로 판단된다.

모드형상을 이용한 전단형 건물의 손상 위치 추정 (Damage Location Detection of Shear Building Structures Using Mode Shape)

  • 유석형;이홍규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권1호
    • /
    • pp.124-132
    • /
    • 2013
  • 손상된 구조물의 동적응답신호를 역해석함으로써 손상위치와 정도를 파악할 수 있다. 일반적으로 손상 전 후 고유진동수의 변화로부터 강성의 감소량을 구하고, 모드형상의 변화로부터 손상위치를 파악할 수 있다. 토목구조물의 경우 동적 응답신호로부터 손상을 검출코자 하는 연구가 상당히 진행되었으며 실용화 되었다. 그러나 건축구조물의 경우 몇 가지 문제로 인하여 이에 대한 연구가 활발히 진행되지 못하고 있다. 본 연구에서는 모드형상을 이용한 전단형 건물의 손상위치 추적방안을 제시 하고자 한다. 전단형 건물의 손상 전 후 1차 모드강성의 차이를 이용한 손상위치 추적지수를 이론적으로 고찰하였으며, 이를 Matlab 또는 MIDAS GENw와 같은 수치해석모델에 적용함으로써 손상위치추적기법의 타당성을 검증하였다. 또한 소형 진동대 실험을 수행하고 실측된 동적응답신호를 이용하여 손상위치를 추적함으로써 실구조물에 대한 적용성을 검토하였다. 진동대 실험결과 층강성이 25% 감소할 때 1차 모드 진동수는 12%증가 하였으며, 손상위치 지수는 손상 층에서 마이너스 값을 나타내었다.

낙엽송 부재의 이중 전단 볼트 접합부 강도 성능 (Strength Property of Double Shear Bolted-Connections of Larch)

  • 박천영;김광모;이전제
    • Journal of the Korean Wood Science and Technology
    • /
    • 제33권1호통권129호
    • /
    • pp.7-16
    • /
    • 2005
  • 본 연구에서는 국산 낙엽송 부재를 이용한 이중 볼트 전단 접합부의 성능을 평가하였다. 주부재로 두께 39 mm, 89 mm, 139 mm, 189 mm로 제재된 국산 낙엽송 제재목과 국산 낙엽송으로 제조된 두께 80 mm, 140 mm, 170 mm 집성재를 사용하였으며, 측면 부재로는 동일 두께의 제재목과 6 mm 철판을 사용하였으며, 접합 철물로는 M12, M16, M20 볼트를 사용하였다. 접합부에 대한 하중 방향은 주부재와 측면 부재의 목리 경사에 대해 수직, 수평한 경우에 대하여 실시하였다. 다우얼 지압 강도 실험을 통해 부재의 다우얼 지압 강도를 산출하고, 볼트 휨 실험을 통해 볼트의 휨 강도를 구한뒤, 최종 볼트 접합부 실험을 통해 접합부 성능을 평가하였으며, 최종 결과는 EYM (European Yield Model)을 사용한 계산값과 비교 평가하였다. 연구 결과 국산 낙엽송 부재의 이중 전단 볼트 접합부 성능은 EYM을 사용하여 얻어진 계산값과 비교하였을 때 그에 상응하거나 그 이상임을 알 수 있었으며, 특히 측면 부재가 제재목인 경우는 거의 일치함을 알 수 있었다. 파괴 모드는 옹이나 건조 결함 등의 영향을 많이 받으며 주부재의 두께가 작을 경우는 mode I, 주부재가 커짐에 따라 mode III으로 옮겨감을 알 수 있었다.

Seismic investigation of cyclic pushover method for regular reinforced concrete bridge

  • Shafigh, Afshin;Ahmadi, Hamid Reza;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • 제78권1호
    • /
    • pp.41-52
    • /
    • 2021
  • Inelastic static pushover analysis has been used in the academic-research widely for seismic analysis of structures. Nowadays, the variety pushover analysis methods have been developed, including Modal pushover, Adaptive pushover, and Cyclic pushover, in which some weaknesses of the conventional pushover method have been rectified. In the conventional pushover analysis method, the effects of cumulative growth of cracks are not considered on the reduction of strength and stiffness of RC members that occur during earthquake or cyclic loading. Therefore, the Cyclic Pushover Analysis Method (CPA) has been proposed. This method is a powerful technique for seismic evaluation of regular reinforced concrete buildings in which the first mode of them is dominant. Since the bridges have different structures than buildings, their results cannot necessarily be attributed to bridges, and more research is needed. In this study, a cyclic pushover analysis with four loading protocols (suggested by valid references) by the Opensees software was conducted for seismic evaluation of two regular reinforce concrete bridges. The modeling method was validated with the comparison of the analytical and experimental results under both cyclic and dynamic loading. The failure mode of the piers was considered in two-mode of flexural failure and also a flexural-shear failure. Along with the cyclic analysis, conventional analysis has been studied. Also, the nonlinear incremental dynamic analysis (IDA) method has been used to examine and compare the results of pushover analyses. The time history of 20 far-field earthquake records was used to conduct IDA. After analysis, the base shear vs. displacement in the middle of the deck was drawn. The obtained results show that the cyclic pushover analysis method is able to evaluate an accurate seismic behavior of the reinforced concrete piers of the bridges. Based on the results, the cyclic pushover has proper convergence with IDA. Its accuracy was much higher than the conventional pushover, in which the bridge piers failed in flexural-shear mode. But, in the flexural failure mode, the results of each two pushover methods were close approximately. Besides, the cyclic pushover method with ACI loading protocol, and ATC-24 loading protocol, can provided more accurate results for evaluating the seismic investigation of the bridges, specially if the bridge piers are failed in flexural-shear failure mode.

Evaluation of shear capacity of FRP reinforced concrete beams using artificial neural networks

  • Nehdi, M.;El Chabib, H.;Said, A.
    • Smart Structures and Systems
    • /
    • 제2권1호
    • /
    • pp.81-100
    • /
    • 2006
  • To calculate the shear capacity of concrete beams reinforced with fibre-reinforced polymer (FRP), current shear design provisions use slightly modified versions of existing semi-empirical shear design equations that were primarily derived from experimental data generated on concrete beams having steel reinforcement. However, FRP materials have different mechanical properties and mode of failure than steel, and extending existing shear design equations for steel reinforced beams to cover concrete beams reinforced with FRP is questionable. This paper investigates the feasibility of using artificial neural networks (ANNs) to estimate the nominal shear capacity, Vn of concrete beams reinforced with FRP bars. Experimental data on 150 FRP-reinforced beams were retrieved from published literature. The resulting database was used to evaluate the validity of several existing shear design methods for FRP reinforced beams, namely the ACI 440-03, CSA S806-02, JSCE-97, and ISIS Canada-01. The database was also used to develop an ANN model to predict the shear capacity of FRP reinforced concrete beams. Results show that current guidelines are either inadequate or very conservative in estimating the shear strength of FRP reinforced concrete beams. Based on ANN predictions, modified equations are proposed for the shear design of FRP reinforced concrete beams and proved to be more accurate than existing equations.