• 제목/요약/키워드: shear mechanism

검색결과 840건 처리시간 0.028초

Shear Resistant Mechanism into Base Components: Beam Action and Arch Action in Shear-Critical RC Members

  • Jeong, Je-Pyong;Kim, Woo
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권1호
    • /
    • pp.1-14
    • /
    • 2014
  • In the present paper, a behavioral model is proposed for study of the individual contributions to shear capacity in shear-critical reinforced concrete members. On the basis of the relationship between shear and bending moment (V = dM/dx) in beams subjected to combined shear and moment loads, the shear resistant mechanism is explicitly decoupled into the base components-beam action and arch action. Then the overall behavior of a beam is explained in terms of the combination of these two base components. The gross compatibility condition between the deformations associated with the two actions is formulated utilizing the truss idealization together with some approximations. From this compatibility condition, the ratio of the shear contribution by the tied arch action is determined. The performance of the model is examined by a comparison with the experimental data in literatures. The results show that the proposed model can explain beam shear behavior in consistent way with clear physical significance.

Shear behavior of multi-hole perfobond connectors in steel-concrete structure

  • Xing, Wei;Lin, Xiao;Shiling, Pei
    • Structural Engineering and Mechanics
    • /
    • 제56권6호
    • /
    • pp.983-1001
    • /
    • 2015
  • This study focuses on the load carrying capacity and the force transfer mechanism of multi-hole perfobond shear connectors in steel-concrete composite structure. The behavior of multi-hole perfobond shear connector is more complicated than single-hole connector cases. 2 groups push-out tests were conducted. Based on the test results, behavior of the connection was analyzed and the failure mechanism was identified. Simplified iterative method and analytic solution were proposed based on force equilibrium for analyzing multi-hole perfobond shear connector performance. Finally, the sensitivity of design parameters of multi-hole perfobond shear connector was investigated. The results of this research showed that shear force distribution curve of multi-hole perfobond shear connector is near catenary. Shear forces distribution were determined by stiffness ratio of steel to concrete member, stiffness ratio of shear connector to steel member, and number of row. Efficiency coefficient was proposed to should be taking into account in different limit state.

Some practical considerations in designing underground station structures for seismic loads

  • Gu, Jianzhong
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.491-500
    • /
    • 2015
  • Under seismic loading, underground station structures behave differently from above ground structures. Underground structures do not require designated energy dissipation system for seismic loads. These structures are traditionally designed with shear or racking deformation capacity to accommodate the movement of the soil caused by shear waves. The free-field shear deformation method may not be suitable for the design of shallowly buried station structures with complex structural configurations. Alternatively, a station structure can develop rocking mechanisms either as a whole rigid body or as a portion of the structure with plastic hinges. With a rocking mechanism, station structures can be tilted to accommodate lateral shear deformation from the soil. If required, plastic hinges can be implemented to develop rocking mechanism. Generally, rocking structures do not expect significant seismic loads from surrounding soils, although the mechanism may result in significant internal forces and localized soil bearing pressures. This method may produce a reliable and robust design of station structures.

Evolution of sandstone shear strength parameters and its mesoscopic mechanism

  • Shi, Hao;Zhang, Houquan;Song, Lei
    • Geomechanics and Engineering
    • /
    • 제20권1호
    • /
    • pp.29-41
    • /
    • 2020
  • It is extremely important to obtain rock strength parameters for geological engineering. In this paper, the evolution of sandstone cohesion and internal friction angle with plastic shear strain was obtained by simulating the cyclic loading and unloading tests under different confining pressures using Particle Flow Code software. By which and combined with the micro-crack propagation process, the mesoscopic mechanism of parameter evolution was studied. The results show that with the increase of plastic shear strain, the sandstone cohesion decreases first and then tends to be stable, while the internal friction angle increases first, then decreases, and finally maintains unchanged. The evolution of sandstone shear strength parameters is closely related to the whole process of crack formation, propagation and coalescence. When the internal micro-cracks are less and distributed randomly and dispersedly, and the rock shear strength parameters (cohesion, internal friction angle) are considered to have not been fully mobilized. As the directional development of the internal micro-fractures as well as the gradual formation of macroscopic shear plane, the rock cohesion reduces continuously and the internal friction angle is in the rise stage. As the formation of the macroscopic shear plane, both the rock cohesion and internal friction angle continuously decrease to a certain residual level.

철근콘크리트 부재의 핀칭 메커니즘에 대한 연구 (Pinching Mechanism of Reinforced Concrete Elements)

  • 김지현;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.482-485
    • /
    • 2006
  • The response of a reinforced concrete element under cyclic shear is characterized by the hysteretic loops of the shear stress-strain curves. These hysteretic loops can exhibit strength deterioration, stiffness degradation, and a pinched shape. Recent tests have shown that the orientation of steel grids in RC shear elements has a strong effect on the "pinching effect" in the post-yield hysteretic loops. When the steel grid was set at a 45 degree angle to the shear plane, there was no pinching effect and no strength deterioration. However, when the steel grid was set parallel to the shear plane, there was a severe pinching effect and severe strength deterioration with increasing shear strain magnitude. In this paper, two RC elements subjected to revered cyclic shear stresses are considered to study the effect of the steel grid orientation. The presence and absence of the pinching mechanism in the post-yield shear hysteretic loops is studied using the Rotating Angle Softened Truss Model (RA-STM) theory.

  • PDF

The effect of compression load and rock bridge geometry on the shear mechanism of weak plane

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Geomechanics and Engineering
    • /
    • 제13권3호
    • /
    • pp.431-446
    • /
    • 2017
  • Rock bridges in rock masses would increase the bearing capacity of Non-persistent discontinuities. In this paper the effect of ratio of rock bridge surface to joint surface, rock bridge shape and normal load on failure behaviour of intermittent rock joint were investigated. A total of 42 various models with dimensions of $15cm{\times}15cm{\times}15cm$ of plaster specimens were fabricated simulating the open joints possessing rock bridge. The introduced rock bridges have various continuities in shear surface. The area of the rock bridge was $45cm^2$ and $90cm^2$ out of the total fixed area of $225cm^2$ respectively. The fabricated specimens were subjected to shear tests under normal loads of 0.5 MPa, 2 MPa and 4 MPa in order to investigate the shear mechanism of rock bridge. The results indicated that the failure pattern and the failure mechanism were affected by two parameters; i.e., the ratio of joint surface to rock bridge surface and normal load. So that increasing in joint area in front of the rock bridge changes the shear failure mode to tensile failure mode. Also the tensile failure change to shear failure by increasing the normal load.

철근 콘크리트의 뚫림전단 파괴메카니즘에 과한 비교 (Comparison on the Failure Mechanism of Punching Shear in the Reinforced Concrete)

  • 이주나;연규원;이호준;박찬수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.533-538
    • /
    • 2000
  • In R.C. flat slab system, a brittle punching failure is a very fatal problem. But there is no generally well-defined answer to the problem and there are wide differences in current practical design codes. therefore, in this study, the factors affecting to punching failure mechanism have been studied to find out the punching shear behavior in R.C. flat slabs by comparing other investigations and practical design codes. Therefore, In this study, the factors affecting to punching failure mechanism have been studied to find out the punching shear behavior in R.C. flat slabs by comparing other investigations and practical design codes. The conclusions in this study are summarized as follows; 1) The factors affecting to punching shear are concrete strength ($f_\alpha$), ratio of column side length to slab depth (c/d), ratio of distance from column center to radial contraflexure (l/d), yield strength of steel ($f_y$), flexural reinforcement ratio ($\rho$) and size effects. 2) It is shown that th use of $\surd{f_{ck}}$in applying($f_\alpha$ to punching shear strength estimation may be more sensitive in high concrete strength. 3) The effects of l/d, ($f_y$, size are no clear in the punching failure mechanism, so in the future, it should be investigated with the effects of various composed load.

  • PDF

콤솔 멀티피직스를 이용한 2차원 탄소성 인장 암석권 모형에서 발생하는 전단열에 관한 수치 모사 연구 (Numerical Modeling of Shear Heating in 2D Elastoplastic Extensional Lithosphere using COMSOL Multiphysics®)

  • 조태환;소병달
    • 지구물리와물리탐사
    • /
    • 제23권1호
    • /
    • pp.1-12
    • /
    • 2020
  • 섭입 및 열개와 같이 대변형을 수반하는 지구동역학적 현상 발생은 암석권의 국지적인 약대의 발달이 필요하다. 이러한 약화 기작 중 하나인 전단열은 암석권의 온도를 국부적으로 높여 강도를 낮추는 역할을 하여 암석권 파괴를 촉진시킬 수 있다. 본 연구에서는 전단열에 대한 정량적인 분석을 위하여 2차원 탄소성 인장 분지 모형을 제작하여 기존 수치 모사 연구를 벤치마크하였다. 암석권의 항복강도, 인장 속도, 변형량- 및 온도-의존성 약화 현상 등을 조절하여 전단열 발생량에 미치는 영향을 분석하였다. 실험 결과, 약화를 고려하지 않은 경우 전단열의 발생량은 암석권의 항복강도 및 인장 속도와 양의 상관관계가 있는 것으로 나타났다. 기준 모형인 항복강도 100 MPa, 인장 속도 2 cm/yr로 설정된 경우, 총 20 km 인장된 시점(0.025의 변형률)에서 ~ 50 K의 온도 상승을 보여주었다. 소성 변형 및 온도에 따른 약화가 포함된 경우에는, 더 효율적인 약화 기작이 더 강한 전단열의 생성으로 이어지는데 이러한 현상은 약화 기작과 전단열 발생 사이에 양성되먹임이 작용함을 지시한다. 또한 변형 초기에 급격한 전단열 발생량을 보여주지만, 변형이 지속되어 암석권의 강도가 약화되면 전단열 발생 속도가 최대 ~ 80% 감소했다. 이는 약화 기작이 포함된 경우 전단열은 비교적 손상되지 않은 상태인 암석권의 강도에 큰 영향을 미침을 시사한다.

유한요소법을 이용한 전단 메카니즘에 관한 연구 (A Study on Shearing Mechanism by FEM)

  • 정성훈;강정진;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 춘계학술대회논문집
    • /
    • pp.211-223
    • /
    • 1995
  • The purpose of the present study is to examine shearing mechanism through rigidplastic finite element analysis. Difficulties arise in simulating shearing process due tothe narrow shear band formation andlackof proper fracture resolve these difficulties by using adaptive mesh generation crriterion. The simulation results are obtained for various punch clearances and these are compared with existing experimental results. It is shown that FEM simulation technique can be used to further understand the shearing mechanism.

  • PDF

Experimental and numerical study on pre-peak cyclic shear mechanism of artificial rock joints

  • Liu, Xinrong;Liu, Yongquan;Lu, Yuming;Kou, Miaomiao
    • Structural Engineering and Mechanics
    • /
    • 제74권3호
    • /
    • pp.407-423
    • /
    • 2020
  • The pre-peak cyclic shear mechanism of two-order asperity degradation of rock joints in the direct shear tests with static constant normal loads (CNL) are investigated using experimental and numerical methods. The laboratory testing rock specimens contains the idealized and regular two-order triangular-shaped asperities, which represent the specific geometrical conditions of natural and irregular waviness and unevenness of rock joint surfaces, in the pre-peak cyclic shear tests. Three different shear failure patterns of two-order triangular-shaped rock joints can be found in the experiments at constant horizontal shear velocity and various static constant normal loads in the direct and pre-peak cyclic shear tests. The discrete element method is adopted to simulate the pre-peak shear failure behaviors of rock joints with two-order triangular-shaped asperities. The rock joint interfaces are simulated using a modified smooth joint model, where microscopic scale slip surfaces are applied at contacts between discrete particles in the upper and lower rock blocks. Comparing the discrete numerical results with the experimental results, the microscopic bond particle model parameters are calibrated. Effects of cyclic shear loading amplitude, static constant normal loads and initial waviness asperity angles on the pre-peak cyclic shear failure behaviors of triangular-shaped rock joints are also numerically investigated.