• 제목/요약/키워드: shear influence

검색결과 1,271건 처리시간 0.021초

Main factors determining the shear behavior of interior RC beam-column joints

  • Costa, Ricardo;Providencia, Paulo
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.337-354
    • /
    • 2020
  • Reinforced concrete beam-column (RCBC) joints of laterally loaded unbraced frames are sometimes controlled by their shear behavior. This behavior relies on multiple and interdependent complex mechanisms. There are already several studies on the influence of some parameters on the shear strength of reinforced concrete joints. However, there are no studies methodically tackling all the most relevant parameters and quantifying their influence on the overall joint behavior, not just on its shear strength. Hence, considering the prohibitive cost of a comprehensive parametric experimental investigation, a nonlinear finite element analysis (NLFEA) was undertaken to identify the key factors affecting the shear behavior of such joints and quantify their influence. The paper presents and discusses the models employed in this NLFEA and the procedure used to deduce the joint behavior from the NLFEA results. Three alternative, or complementary, quantities related to shear are considered when comparing results, namely, the maximum shear stress supported by the joint, the secant shear stiffness at maximum shear stress and the secant shear stiffness in service conditions. Depending on which of these is considered, the lower or higher the relevance of each of the six parameters investigated: transverse reinforcement in the joint, intermediate longitudinal bars and diagonal bars in the column, concrete strength, column axial load and confining elements in transverse direction.

풍화잔적토의 불포화전단강도에 미치는 순연직응력의 영향 (Influence of net normal stresses on the shear strength of unsaturated residual soils)

  • 성상규;이인모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.139-146
    • /
    • 2002
  • The characteristics and prediction model for the shear strength of unsaturated residual soils was studied. In order to investigate the influence of the net normal stress on the shear strength, unsaturated triaxial tests and SWCC tests were carried out varying the net normal stress, and the experimental data for unsaturated shear strength tests were compared with predicted shear strength envelopes using existing prediction models. It was shown that the soil - water characteristic curve and the shear strength of the unsaturated soil varied with the change of the net normal stress. Therefore, to achieve a truly descriptive shear strength envelope for unsaturated soils, tile effect of the normal stress on the contribution of matric suction to the shear strength has to be taken into consideration. In this paper, a modified prediction model for the unsaturated shear strength was proposed.

  • PDF

직매형 앵커기초의 전단설계를 위한 ACI 349 Code의 평가 (An Evaluation of ACI 349 Code for Shear Design of CIP Anchor)

  • 장정범;황경민;서용표
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.464-470
    • /
    • 2005
  • The numerical analysis is carried out to identify the influence of design factors to shear capacity of cast-in-place (CIP) anchor in ACI 349 Code that is available for the design of fastening system at Nuclear Power Plant (NPP) in this study. The MASA program is used to develop the numerical analysis model and the developed numerical analysis model is verified on a basis of the various test data of CIP anchor. Both $l/d_o$ and $c_1/l$ we considered as design factors. As a result, the variation of $l/d_o$ has no influence on the shear capacity of CIP anchor but $c_1/l$ has a large influence on the shear capacity of CIP anchor, Therefore, it is proved that ACI 349 Code may give a non-conservative results compared with real shear capacity of CIP anchor according to $c_1/l$.

  • PDF

Influence of material composition on buckling response of FG plates using a simple plate integral model

  • Bakhti, Karima;Sekkal, Mohamed;Adda Bedia, E.A.;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • 제25권4호
    • /
    • pp.447-457
    • /
    • 2020
  • In this study, a simple two-dimensional shear deformation model is employed for buckling analysis of functionally graded (FG) plates. The proposed theory has a kinematic with integral terms which considers the influence of shear deformation without using "shear correction factors". The impact of varying material properties and volume fraction of the constituent on buckling response of the FG plate is examined and discussed. The benefit of this theory over other contributions is that a number of variables is reduced. The basic equations that consider the influence of transverse shear stresses are derived from the principle of virtual displacements. The analytical solutions are obtained utilizing the "Navier method". The accuracy of the proposed theory is proved by comparisons with the different solutions found in the literature.

굳지않은 모르타르의 레올로지 성질에 미치는 간극수압의 영향 (Influence of Pore Wter Pessure on Rheological Properties of Fresh Mortar)

  • 이건철;이세현;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.793-796
    • /
    • 2006
  • In this study, the rheological properties of fresh concrete of fresh mortar and concrete were investigated experimentally by shear box test. The pore water pressure in fresh mortar was measured as an influence factor of shear deformation of fresh mortar. As the result, it was clarified that the rheological properties is affected by the pore water pressure in fresh mortar and, the correcting method of shear stress in case of shear box test was obtained.

  • PDF

Seismic resistance and mechanical behaviour of exterior beam-column joints with crossed inclined bars

  • Bakir, P.G.
    • Structural Engineering and Mechanics
    • /
    • 제16권4호
    • /
    • pp.493-517
    • /
    • 2003
  • Attempts at improving beam-column joint performance has resulted in non-conventional ways of reinforcement such as the use of the crossed inclined bars in the joint area. Despite the wide accumulation of test data, the influence of the crossed inclined bars on the shear strength of the cyclically loaded exterior beam-column joints has not yet been quantified and incorporated into code recommendations. In this study, the investigation of joints has been pursued on two different fronts. In the first approach, the parameters that influence the behaviour of the cyclically loaded beam-column joints are investigated. Several parametric studies are carried out to explore the shear resisting mechanisms of cyclically loaded beam-column joints using an experimental database consisting of a large number of joint tests. In the second approach, the mechanical behaviour of joints is investigated and the equations for the principal tensile strain and the average shear stress are derived from joint mechanics. It is apparent that the predictions of these two approaches agree well with each other. A design equation that predicts the shear strength of the cyclically loaded exterior beam-column joints is proposed. The design equation proposed has three major differences from the previously suggested design equations. First, the influence of the bond conditions on the joint shear strength is considered. Second, the equation takes the influence of the shear transfer mechanisms of the crossed inclined bars into account and, third, the equation is applicable on joints with high concrete cylinder strength. The proposed equation is compared with the predictions of the other design equations. It is apparent that the proposed design equation predicts the joint shear strength accurately and is an improvement on the existing code recommendations.

Experimental study on the shear failure model for concrete under compression-shear loading

  • Shu, Xiaojuan;Luo, Yili;Zhao, Chao;Dai, Zhicheng;Zhong, Xingu;Zhang, Tianyu
    • Computers and Concrete
    • /
    • 제29권2호
    • /
    • pp.81-92
    • /
    • 2022
  • The influence of normal stress perpendicular to the potential shear plane was always neglected in existing researches, which may lead to a serious deviation of the shear strength of concrete members in practice designs and numerical analyses. In this study, a series of experimental studies are carried out in this paper, which serves to investigate the shear behavior of concrete under compression shear loading. Based on the test results, a three-phase shear failure model for cohesive elements are developed, which is able to take into consideration the influence of normal stress on the shear strength of concrete. To identify the accuracy and applicability of the proposed model, numerical models of a double-noted concrete plate are developed and compared with experimental results. Results show that the proposed constitutive model is able to take into consideration the influence of normal stress on the shear strength of concrete materials, and is effective and accurate for describing the complex fracture of concrete, especially the failure modes under compression shear loadings.

H형강 매입형 합성기둥의 부착강도 및 전단연결재의 전단거동 (Bond Strength between Concrete and Steel and Shear Behavior of Shear Connectors of H-shaped Steel Encased Composite Columns)

  • 왕녕;이혜림;이명재
    • 한국강구조학회 논문집
    • /
    • 제29권5호
    • /
    • pp.377-387
    • /
    • 2017
  • 이 연구에서는 강판 매입형 합성기둥의 Push-out Test를 통해 강재와 콘크리트의 부착면적에 따른 영향을 알아보았다. 이로써 부착면적이 넓을수록 부착응력은 작아진다는 경향이 조사되었다. 또한 소규모 매입형 합성기둥의 경우에는 설계기준에서 제시하는 공칭부착 응력값이 과소하게 적용되는 것을 확인하였다. 다음으로 H형강 매입형 합성기둥의 Push-out Test를 통해 전단연결재의 수와 간격에 따른 영향을 알아보았다. 이로써 전단연결재의 전단거동을 파악할 수 있었다.

Comparison of macrosynthetic and steel FRC shear-critical beams with similar residual flexure tensile strengths

  • Ortiz-Navas, Francisco;Navarro-Gregori, Juan;Leiva, Gabriel;Serna, Pedro
    • Structural Engineering and Mechanics
    • /
    • 제76권4호
    • /
    • pp.491-503
    • /
    • 2020
  • This study extends previous experimental research on the shear behaviour of macrosynthetic fibre-reinforced concrete beams and compares them to steel fibre-reinforced concrete beams with similar mechanical and geometrical properties. This work employed two fibre types: 60/0.9 (long/diameter) double hooked-end steel fibre and 60/85 monofilament polypropylene fibre. Beams were tested by shear loading covering parameters, such as two different cross-section widths, two shear-span-to-effective-depth ratios, two fibre types and using repetitions with and without transverse reinforcement. For quantitative comparison purposes, crack pattern evolution was studied along increasing loads levels. Effects were studied by photogrammetry, including influence of fibres on crack propagation in uncracked and dowel zones, influence of fibres on stirrup behaviour, and shear deformation or kinematics of critical shear cracks. The results evidenced similar effectiveness for both fibre types in controlling shear crack propagation and horizontal dowel cracking. Both fibres provided similar shear ductility and shear deflections. Consequently, the authors confirm that residual flexural tensile strengths are a convenient parameter for characterising the shear behaviour of fibre-reinforced concrete beams.

거칠기와 수직응력에 따른 암석 절리면의 전단거동 (The Influence of Rock Joint Roughness and Normal Stress on Shear Behaviour)

  • 이명호;김종우;장광택
    • 터널과지하공간
    • /
    • 제17권3호
    • /
    • pp.186-196
    • /
    • 2007
  • 본 연구에서는 거칠기와 수직응력이 절리면의 전단거동에 미치는 영향을 검토하기 위하여 30개의 자연암반 절리 시료를 대상으로 실험을 실시하였다. 3차원 레이저 거칠기 측정장치를 이용하여 절리면의 거칠기 정보를 측정하였으며, 시료들의 거칠기에 따라 10개씩 세 가지 그룹으로 분류하였다. 다음으로 수직응력을 다섯 단계로 변화시켜가며 전단실험을 실시함으로써 최대전단강도, 잔류전단강도, 전단강성, 팽창특성 등을 조사하였다. 절리면의 거칠기가 증가함에 따라 최대전단강도는 증가하였으며, 거칠기가 최대전단강도에 미치는 영향은 수직응력이 작은 경우에 더욱 크게 나타났다. 또한 절리면의 거칠기가 증가할수록 잔류전단강도도 점차 증가하였다. 전단강성은 거칠기 및 수직응력이 커짐에 따라 증가하는 것으로 나타났으나, 팽창각은 수직응력이 증가할수록 감소하였고, 동일한 수직응력하에서는 절리면의 거칠기가 커질수록 증가하였다.