Browse > Article
http://dx.doi.org/10.12989/sss.2020.25.4.447

Influence of material composition on buckling response of FG plates using a simple plate integral model  

Bakhti, Karima (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
Sekkal, Mohamed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
Adda Bedia, E.A. (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
Tounsi, Abdelouahed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
Publication Information
Smart Structures and Systems / v.25, no.4, 2020 , pp. 447-457 More about this Journal
Abstract
In this study, a simple two-dimensional shear deformation model is employed for buckling analysis of functionally graded (FG) plates. The proposed theory has a kinematic with integral terms which considers the influence of shear deformation without using "shear correction factors". The impact of varying material properties and volume fraction of the constituent on buckling response of the FG plate is examined and discussed. The benefit of this theory over other contributions is that a number of variables is reduced. The basic equations that consider the influence of transverse shear stresses are derived from the principle of virtual displacements. The analytical solutions are obtained utilizing the "Navier method". The accuracy of the proposed theory is proved by comparisons with the different solutions found in the literature.
Keywords
functionally graded plate; shear deformation theory; buckling;
Citations & Related Records
Times Cited By KSCI : 27  (Citation Analysis)
연도 인용수 순위
1 Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34, 3391-4011. https://doi.org/10.1016/j.apm.2010.03.034
2 Viswanathan, K.K., Javed, S. and Abdul Aziz, Z. (2013), "Free vibration of symmetric angle-ply layered conical shell frusta of variable thickness under shear deformation theory", Struct. Eng. Mech., Int. J., 45(2), 259-275. https://doi.org/10.12989/sem.2013.45.2.259   DOI
3 Zhao, X., Lee, Y.Y. and Liew, K.M. (2009a), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 60, 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005   DOI
4 Zhao, X., Lee, Y.Y. and Liew, K.M. (2009b), "Free vibration analysis of functionally graded plates using the element-free kp-Ritz method", J. Sound Vib., 319, 918-939. https://doi.org/10.1016/j.jsv.2008.06.025   DOI
5 Emam, S., Eltaher, M.A., Khater, M. and Abdalla, W. (2018), "Postbuckling and free vibration of multilayer imperfect nanobeams under a pre-stress load", Appl. Sci., 8(11), 2238. https://doi.org/10.3390/app8112238   DOI
6 Hadji, L., Hassaine Daouadji, T., Ait Amar Meziane, M., Tlidji, Y. and Adda Bedia, E.A. (2016), "Analysis of functionally graded beam using a new first-order shear deformation theory", Struct. Eng. Mech., Int. J., 57(2), 315-325. https://doi.org/10.12989/sem.2016.57.2.315   DOI
7 Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., Int. J., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231
8 Hamed, M.A., Eltaher, M.A., Sadoun, A.M. and Almitani, K.H. (2016), "Free vibration of symmetric and sigmoid functionally graded nanobeams", Appl. Phys. A, 122(9), 829. https://doi.org/10.1007/s00339-016-0324-0   DOI
9 Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011), "A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates", Int. J. Mech. Sci., 53, 11-22. https://doi.org/10.1016/j.ijmecsci.2010.10.002   DOI
10 Jha, D.K., Kant, T. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct., 96, 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001   DOI
11 Kar, V.R. and Panda, S.K. (2015a), "Thermoelastic analysis of functionally graded doubly curved shell panels using nonlinear finite element method", Compos. Struct., 129, 202-212. https://doi.org/10.1016/j.compstruct.2015.04.006   DOI
12 Kar, V.R. and Panda, S.K. (2015b), "Free vibration responses of temperature dependent functionally graded curved panels under thermal environment", Latin Am. J. Solids Struct., 12(11), 20062024. https://doi.org/10.1590/1679-78251691
13 Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., Int. J., 5(4), 205-221. https://doi.org/10.12989/amr.2016.5.4.205
14 Kar, V.R. and Panda, S.K. (2015c), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., Int. J., 53(4), 661-679. https://doi.org/10.12989/sem.2015.53.4.661   DOI
15 Kar, V.R. and Panda, S.K. (2015d), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., Int. J., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693   DOI
16 Kar, V.R. and Panda, S.K. (2017), "Large-amplitude vibration of functionally graded doubly-curved panels under heat conduction", AIAA J., 55(12), 4376-4386. https://doi.org/10.2514/1.J055878   DOI
17 Mantari, J.L. and Granados, E.V. (2015), "A refined FSDT for the static analysis of functionally graded sandwich plates", Thin Wall. Struct., 90, 150-158. https://doi.org/10.1016/j.tws.2015.01.015   DOI
18 Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., Int. J., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805
19 Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125   DOI
20 Mahdavian, M. (2009), "Buckling analysis of simply-supported functionally graded rectangular plates under non-uniform inplane compressive loading", J. Solid Mech., 1, 213-225.
21 Mantari, J. and Soares, C.G. (2013), "A novel higher-order shear deformation theory with stretching effect for functionally graded plates", Compos. Part B, 45(1), 268-281. https://doi.org/10.1016/j.compositesb.2012.05.036   DOI
22 Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, Int. J., 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053   DOI
23 Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2   DOI
24 Batou, B., Nebab, M., Bennai, R., AitAtmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs ", Steel Compos. Struct., Int. J., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699
25 Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., Int. J., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761
26 Bodaghi, M. and Saidi, A.R. (2010), "Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory", Appl. Math. Model., 34, 3659-3673. https://doi.org/10.1016/j.apm.2010.03.016   DOI
27 Simsek, M. (2010), "Vibration analysis of a functionally graded beam under a moving mass by using different beam theories", Compos. Struct., 92, 904-917. https://doi.org/10.1016/j.compstruct.2009.09.030   DOI
28 Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017), "A new quasi-3D HSDT for buckling and vibration of FG plate", Struct. Eng. Mech., Int. J., 64(6), 737-749. https://doi.org/10.12989/sem.2017.64.6.737
29 Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445   DOI
30 Shahrjerdi, A., Mustapha, F., Bayat, M. and Majid, D.L.A. (2011), "Free vibration analysis of solar functionally graded plates with temperature-dependent material properties using second order shear deformation theory", J. Mech. Sci. Technol., 25(9), 2195-2209. https://doi.org/10.1007/s12206-011-0610-x   DOI
31 Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30, 741-747. https://doi.org/10.1016/j.matdes.2008.05.015   DOI
32 Sofiyev, A.H., Deniz, A., Akcay, I.H. and Yusufogclu, E. (2006), "The vibration and stability of a three-layered conical shell containing an FGM layer subjected to axial compressive load", Acta Mechanica, 183, 129-144. https://doi.org/10.1007/s00707-006-0328-5   DOI
33 Soliman, A.E., Eltaher, M.A., Attia, M.A. and Alshorbagy, A.E. (2018), "Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility", Struct. Eng. Mech., Int. J., 66(1), 85-96. https://doi.org/10.12989/sem.2018.66.1.085
34 Eltaher, M.A., Attia, M.A., Soliman, A.E. and Alshorbagy, A.E. (2018a), "Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM", Struct. Eng. Mech., Int. J., 66(1), 97-111. https://doi.org/10.12989/sem.2018.66.1.097
35 Bouazza, M., Zenkour, A.M. and Benseddiq, N. (2018), "Effect of material composition on bending analysis of FG plates via a twovariable refined hyperbolic theory", Arch. Mech., 70(2), 107-129.
36 Chen, W.R. and Chang, H. (2018), "Vibration analysis of functionally graded timoshenko beams", Int. J. Struct. Stab. Dyn., 18, 1850007. https://doi.org/10.1142/S0219455418500074   DOI
37 Eltaher, M.A., Khairy, A., Sadoun, A.M. and Omar, F.A. (2014), "Static and buckling analysis of functionally graded Timoshenko nanobeams", Appl. Mathe. Computat., 229, 283-295. https://doi.org/10.1016/j.amc.2013.12.072   DOI
38 Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018b), "Modified porosity model in analysis of functionally gradedporous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(3), 141. https://doi.org/10.1007/s40430-018-1065-0   DOI
39 Eltaher, M.A., Mohamed, N., Mohamed, S.A. and Seddek, L.F. (2019a), "Periodic and nonperiodic modes of postbuckling and nonlinear vibration of beams attached to nonlinear foundations", Appl. Mathe. Model., 75, 414-445. https://doi.org/10.1016/j.apm.2019.05.026   DOI
40 Eltaher, M.A., Mohamed, N., Mohamed, S. and Seddek, L.F. (2019b), "Postbuckling of curved carbon nanotubes using energy equivalent model", J. Nano Res., 57, 136-157. https://doi.org/10.4028/www.scientific.net/JNanoR.57.136   DOI
41 Emam, S. and Eltaher, M.A. (2016), "Buckling and postbuckling of composite beams in hygrothermal environments", Compos. Struct., 152, 665-675. https://doi.org/10.1016/j.compstruct.2016.05.029   DOI
42 Mohamed, N., Eltaher, M.A., Mohamed, S. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., Int. J., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737
43 Mantari, J.L., Oktem, A.S. and Soares, O.G. (2012), "Bending response of functionally graded plates by using a new higher order shear deformation theory", Compos. Struct., 94, 714-723. https://doi.org/10.1016/j.compstruct.2011.09.007   DOI
44 Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2D higher-order deformation theory", Compos. Struct., 82, 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030   DOI
45 Mehar, K. and Panda, S.K. (2018), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., Int. J., 67(6), 565-578. https://doi.org/10.12989/sem.2018.67.6.565
46 Mohammadi, M., Saidi, A.R. and Jomehzadeh, E. (2010), "A novel analytical approach for the buckling analysis of moderately thick functionally graded rectangular plates with two simply-supported opposite edges", Proc. Inst. Mech. Eng. Part CProc. Inst. Mech. Eng. Part C, 224, 1834-1841. https://doi.org/10.1243/09544062JMES1804
47 Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2012a), "A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Struct., 94, 1814-1825. https://doi.org/10.1016/j.compstruct.2011.12.005   DOI
48 Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012b), "A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Part B, 42, 711-725. https://doi.org/10.1016/j.compositesb.2011.08.009
49 Nguyen, D.K., Nguyen, Q.H., Tran, T.T. and Bui, V.T. (2017), "Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load", Acta Mech., 228, 141-155. https://doi.org/10.1007/s00707-016-1705-3   DOI
50 Nguyen, T.K. (2015), "A higher-order hyperbolic shear deformation plate model for analysis of functionally graded materials", Int. J. Mech. Mater. Des., 11(2), 203-219. https://doi.org/10.1007/s10999-014-9260-3   DOI
51 Pitakthapanaphong, S. and Busso, E.P. (2002), "Self-consistent elasto-plastic stress solutions for functionally graded material systems subjected to thermal transients", J. Mech. Phys. Solids, 50, 695-715. https://doi.org/10.1016/S0022-5096(01)00105-3   DOI
52 Pradhan, K.K. and Chakraverty, S. (2014), "Effects of different shear deformation theories on free vibration of functionally graded beams", Int. J. Mech. Sci., 82, 149-160. https://doi.org/10.1016/j.ijmecsci.2014.03.014   DOI
53 Pradyumna, S. and Bandyopadhyay, J.N. (2008), "Free vibration analysis of functionally graded curved panels using a higherorder finite element formulation", J. Sound Vib., 318, 176-192. https://doi.org/10.1016/j.jsv.2008.03.056   DOI
54 Reddy, J.N. (2011), "A general nonlinear third-order theory of functionally graded plates", Int. J. Aerosp. Lightweight Struct., 1, 1-21. https://doi.org/10.3850/S201042861100002X   DOI
55 Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., Int. J., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329
56 Sahouane, A., Hadji, L. and Bourada, M. (2019), "Numerical analysis for free vibration of functionally graded beams using an original HSDBT", Earthq. Struct., Int. J., 17(1), 31-37. https://doi.org/10.12989/eas.2019.17.1.031