• 제목/요약/키워드: shear flow

검색결과 1,884건 처리시간 0.024초

정4각단면덕트의 입구영역에서 난류맥동유동의 압력분포, 전단응력분포와 관마찰계수에 관한 연구(Ⅰ), - 실험해석- (A Study on Pressure Distribution, Wall Shear Stress and Friction Factor of Developing Turbulent Pulsating Flows in a Square Duct(Ⅰ), -Experimental Analysis-)

  • 박길문;조병기;고영하;봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권5호
    • /
    • pp.58-67
    • /
    • 1996
  • In the present study, the pressure distribution, wall shear stress distribution and friction factor of developing turbulent pulsating flows are investigated theoretically and experimentally in the entrance region of a square duct. The pressure distribution for turbulent pulsating flows are in good agreement with the theoretical values. The time-averaged pressure gradients of the turbulent pulsating flows show the same tendency as those of turbulent steady flows as the time-averged Reynolds number $(Re_{ta})$ increase. Mean shear stresses in the turbulent pulsating flow increase more in the inlet flow region than in the fully developed flow region and approach to almost constant value in the fully developed flow region. In the turbulent pulsating flow, the friction factor of the quasi-steady state flow $({\lambda}_{q, tu})$ follow friction factor's law in turbulent steady flow. The entrance length of the turbulent pulsating flow is not influenced by the time-averaged Reynolds number $(Re_{ta})$ and it is about 40 times as large as the hydraulic diameter.

  • PDF

고밀도 균일 안개스크린을 위한 에어로졸 유동의 최적 생성조건 (Optimal Conditions of Aerosol Flow Generation for High-density and Uniform Fog Screen)

  • 신동수;송우석;김진원;김우진;구자예
    • 한국분무공학회지
    • /
    • 제22권1호
    • /
    • pp.13-21
    • /
    • 2017
  • The fog screen is a device projecting the media to the aerosol flow field. As major parameters to generate dense and steady fog screen, shear stress, optical blockage ratio and SMD were obtained result through experiment. The micro droplet was generated by the piezo oscillation element, and the aerosol flow mixed with an air flow was sprayed into the vertical direction from the top of the fog screen through the 280 mm slot. For produce a dense, uniform fog screen, the shear effect, optical blockage ratio and SMD between aerosol and air curtain were measured. The minimum and maximum shear stress conditions were selected and it was confirmed that the optical transmission deviation of the aerosol flow field was small when the aerosol and air curtain flow rates were changed. When the aerosol and air curtain flow power were 18 V (1.51 m/s) and 24 V (2.55 m/s), respectively, under the condition of the minimum shear stress and laminar flow, the optical blockage ratios with the spray length were small, and it produced a most stable and high density uniform fog screen by injecting a constant of $10{\mu}m$ or less.

곡관덕트에서 난류진동유동의 전단응력분포와 압력분포 (Wall shear stress and Pressure Distributions of Developing Turbulent Oscillatory Flows in a Square sectional Curved Duct)

  • 이홍구;손현철;이행남;박길문
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.380-385
    • /
    • 2001
  • In the present study, flow characteristics of turbulent oscillatory flow in a square-sectional $180^{\circ}$ curved duct are investigated experimentally. In order to measure wall shear stress and pressure distributions, experimental studies for air flow are conducted in a square-sectional $180^{\circ}$ curved duct by using the LDV system with the data acquisition and the processing system. The wall shear stress measuring point bend angle of the $150^{\circ}$ and pressure distribution of the inlet (${\phi}=0^{\circ}$) to the outlet (${\phi}=180^{\circ}$) at $10^{\circ}$ intervals of the duct. The results obtained from the experimentation are summarized as follows: A wall shear stress value in an inner wall is larger than that in an outer wall, except for the phase angle (${\omega}t/{\pi}/6$) of 3, because of the intensity of secondary flow. The pressure distributions are the largest in accelerating and decelerating regions at the bend angle(${\phi}$) of $90^{\circ}$ and pressure difference of inner and outer walls is the largest before and after the ${\phi}=90^{\circ}$.

  • PDF

2-프레임 PTV를 이용한 수직벽 주위 유동장 해석 (Velocity Field Measurement of Flow Around a Surface-Mounted Vertical Fence Using the Two-Frame PTV System)

  • 백승조;이상준
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1340-1346
    • /
    • 1999
  • The turbulent shear flow around a surface-mounted vertical fence was investigated using the two-frame PTV system. The Reynolds number based on the fence height(H) was 2950. From this study, it is revealed that at least 400 instantaneous velocity field data are required for ensemble average to get reliable turbulence statistics, but only 100 field data are sufficient for the time-averaged mean velocity information. Various turbulence statistics such as turbulent intensities, turbulence kinetic energy and Reynolds shear stress were calculated from 700 instantaneous velocity vector fields. The fence flow has an unsteady recirculation region behind the fence, followed by a slow relaxation to the flat-plate boundary layer flow. The time-averaged reattachment length estimated from the streamline distribution is about 11.2H. There exists a region of negative Reynolds shear stress near the fence top due to the highly convex (stabilizing) streamline-curvature of the upstream flow. The large eddy structure in the separated shear layer seems to have significant influence on the development of the separated shear layer and the reattachment process.

Structure Analyses of Rubber/Filler System under Shear Flow by Using Time Resolved USAXS Method

  • Nishitsuji, Shotaro;Takenaka, Mikihito;Amino, Naoya;Ishikawa, Yasuhiro
    • Elastomers and Composites
    • /
    • 제54권2호
    • /
    • pp.156-160
    • /
    • 2019
  • The changes in the dispersion of carbon black in liquid polyisoprene under shear flow with time have been investigated by time-resolved ultra small-angle X-ray scattering (USAXS) method. The analyses of USAXS profile immediately after the start of shear flow clarified that the aggregates of carbon black with a mean radius of gyration of 14 nm and surface fractal dimension of 2.5 form the fractal network structure with mass-fractal dimension of 2.9. After the application of the shear flow, the scattering intensity increases with time at the observed whole entire q region, and then the a shoulder appears at $q=0.005nm^{-1}$, indicating that the agglomerate is broken and becomes smaller by shear flow. The analysis by the Unified Guinier/Power-law approach yielded several characteristic parameters, such as the sizes of aggregate and agglomerate, mass-fractal dimension of agglomerate, and surface fractal dimension of the primary particle. While the mean radius of gyration of the agglomerate decreases with time, the mean radius of gyration of the aggregate, mass fractal dimension, and surface fractal dimension don't change with time, indicating that the aggregates peel off the surface of the agglomerate.

Thickness of shear flow path in RC beams at maximum torsional strength

  • Kim, Hyeong-Gook;Lee, Jung-Yoon;Kim, Kil-Hee
    • Computers and Concrete
    • /
    • 제29권 5호
    • /
    • pp.303-321
    • /
    • 2022
  • The current design equations for predicting the torsional capacity of RC members underestimate the torsional strength of under-reinforced members and overestimate the torsional strength of over-reinforced members. This is because the design equations consider only the yield strength of torsional reinforcement and the cross-sectional properties of members in determining the torsional capacity. This paper presents an analytical model to predict the thickness of shear flow path in RC beams subjected to pure torsion. The analytical model assumes that torsional reinforcement resists torsional moment with a sufficient deformation capacity until concrete fails by crushing. The ACI 318 code is modified by applying analytical results from the proposed model such as the average stress of torsional reinforcement and the effective gross area enclosed by the shear flow path. Comparison of the calculated and observed torsional strengths of existing 129 test beams showed good agreement. Two design variables related to the compressive strength of concrete in the proposed model are approximated for design application. The accuracy of the ACI 318 code for the over-reinforced test beams improved somewhat with the use of the approximations for the average stresses of reinforcements and the effective gross area enclosed by the shear flow path.

Numerical study of the effects of periodic body acceleration (PGZ) and bifurcation angle in the stenosed artery bifurcation

  • Ro, Kyoung-Chul;Ryou, Hong-Sun
    • Korea-Australia Rheology Journal
    • /
    • 제21권3호
    • /
    • pp.175-183
    • /
    • 2009
  • This article describes the numerical investigation of blood flow in the stenosed artery bifurcation with acceleration of the human body. Using the commercial software FLUENT, three-dimensional analyses were performed for six simulation cases with different body accelerations and bifurcation angles. The blood flow was considered to be pulsation flow, and the blood was considered to be a non-Newtonian fluid based on the Carreau viscosity model. In order to consider periodic body acceleration, a modified, time-dependent, gravitational-force term was used in the momentum equation. As a result, flow variables, such as flow rate and wall shear stress, increase with body acceleration and decrease with bifurcation angle. High values of body acceleration generate back flow during the diastolic period, which increases flow fluctuation and the oscillatory shear index at the stenosis.

Flow-pattern identification around two rectangular cylinders with aspect ratio of 0.5 in tandem arrangement

  • Yang, Letian;Gu, Zhifu;Zhao, Xuejun;Zhang, Weimin
    • Wind and Structures
    • /
    • 제16권2호
    • /
    • pp.179-192
    • /
    • 2013
  • The flow around two rectangular cylinders with aspect ratio of 0.5 in a tandem arrangement, was investigated using pressure measurements (in a wind tunnel) and flow visualizations (in a water tunnel) in the range of P/h from 0.6 to 4.0. Four flow patterns were identified, and processes of shear layers wrapping around, the shear layer reattachment, vortices wrapping around and vortices impingement, were observed. Mean and rms pressure distributions, flow visualizations and Strouhal numbers were presented and discussed. The paper revealed that the variations of Strouhal numbers were associated with the shear layers or vortex interference around two cylinders.

느린 전단흐름에서 편모운동에 의한 대장균의 거동 특성 (Swimming Motion of Flagellated Bacteria Under Low Shear Flow Conditions)

  • 안용태;신항식
    • 대한환경공학회지
    • /
    • 제33권3호
    • /
    • pp.191-195
    • /
    • 2011
  • 본 연구의 목적은 낮은 전단흐름조건에서 편모 운동성이 박테리아의 거동 특성에 미치는 영향을 파악하는데 있다. 대다수의 미생물은 편모를 이용하여 수용액 내에서 운동할 수 있는 능력을 가지고 있으며, 이러한 운동성은 수계나 수처리 시스템에서 미생물의 거동에 있어서 중요한 역할을 한다. 그러나 현재까지 병원성 미생물의 이동 현상과 관련된 연구에서 편모에 의한 운동성은 거의 고려되지 않고 있는 실정이다. 본 연구에서는 미세유체장치를 이용하여 전단흐름이 낮은 조건에서 E. coli의 거동 특성을 파악하고자 하였다. 실험을 통하여 유속이 작은 경우에 E. coli는 포물선의 형태의 궤적들을 그리며 이동하는 것을 알 수 있었으며, 벽면 근처에서는 상류로 헤엄쳐 올라간다는 것을 파악하였다. 또한 유속과 종횡비(aspect ratio)에 따른 궤적의 변화를 분석하였는데, 유속이 작을수록 포물선 형태의 궤적을 그리게 되며, 길이가 짧을수록 보다 작은 회전 반경을 그리며 운동하는 것을 관찰할 수 있었다.

Transient microfluidic approach to the investigation of erythrocyte aggregation: comparison and validation of the method

  • Hou, Jian-Xun;Shin, Se-Hyun
    • Korea-Australia Rheology Journal
    • /
    • 제20권4호
    • /
    • pp.253-260
    • /
    • 2008
  • A method based on transient shear flow dynamics of red cell aggregates was developed to investigate reversible re-aggregation processes with decreasing shear flow. In the microchannel-flow aggregometry, the aggregated red blood cells that are subjected to continuously decreasing shear stress in microchannel flow were measured with the use of a laser-scattering technique. Both the laser-backscattered intensity and pressure were simultaneously measured with respect to time, resulting in shear stress ranging from $0{\sim}35\;Pa$ for a time period of less than 30 seconds. The time dependent recording of the backscattered light intensity (syllectogram) yielded an upward convex curve with a peak point, which reflected the transition threshold of aggregation in the RBC suspensions. Critical-time and critical-shear stress corresponding to the peak point were examined by varying the initial pressure-differential and the micro channel depth, and these results showed good potential for being used as new aggregation indices. In the present study, these newly proposed indices were also validated by differentiating the effect of fibrinogen on RBC aggregation and then these indices were compared to the conventional indices that were measured by a rotational aggregometer.