Browse > Article
http://dx.doi.org/10.7473/EC.2019.54.2.156

Structure Analyses of Rubber/Filler System under Shear Flow by Using Time Resolved USAXS Method  

Nishitsuji, Shotaro (Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University)
Takenaka, Mikihito (Division of Multidisciplinary Chemistry, Institute for Chemical Research, Kyoto University)
Amino, Naoya (The Yokohama-rubber Company, Ltd.)
Ishikawa, Yasuhiro (The Yokohama-rubber Company, Ltd.)
Publication Information
Elastomers and Composites / v.54, no.2, 2019 , pp. 156-160 More about this Journal
Abstract
The changes in the dispersion of carbon black in liquid polyisoprene under shear flow with time have been investigated by time-resolved ultra small-angle X-ray scattering (USAXS) method. The analyses of USAXS profile immediately after the start of shear flow clarified that the aggregates of carbon black with a mean radius of gyration of 14 nm and surface fractal dimension of 2.5 form the fractal network structure with mass-fractal dimension of 2.9. After the application of the shear flow, the scattering intensity increases with time at the observed whole entire q region, and then the a shoulder appears at $q=0.005nm^{-1}$, indicating that the agglomerate is broken and becomes smaller by shear flow. The analysis by the Unified Guinier/Power-law approach yielded several characteristic parameters, such as the sizes of aggregate and agglomerate, mass-fractal dimension of agglomerate, and surface fractal dimension of the primary particle. While the mean radius of gyration of the agglomerate decreases with time, the mean radius of gyration of the aggregate, mass fractal dimension, and surface fractal dimension don't change with time, indicating that the aggregates peel off the surface of the agglomerate.
Keywords
ultra small-angle X-ray scattering; unified guinier/power-law approach;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. I. Medalia and F. A. Heckman, "Morphology of aggregates-II. Size and shape factors of carbon black aggregates from electron microscopy", Carbon, 7, 567 (1969).   DOI
2 W. M. Hess, L. L. Ban, and G. C. McDonald, "Carbon Black Morphology - I. Particle Microstructure. II. Automated EM Analysis of Aggregate Size and Shape", Rubber Chem. Technol., 42, 1209 (1969).   DOI
3 C. R. Herd, G. C. McDonald, and W. M. Hess, "Morphology of Carbon - Black Aggregates: Fractal Versus Euclidean Geometry", Rubber Chem. Technol., 65, 107 (1992).   DOI
4 Y. Ikeda, A. Katoh, J. Shimanuki, and S. Kohjiya, "Nano-structural observation of in situ silica in natural rubber matrix by three dimensional transmission electron microscopy", Macromol. Rapid Comm., 25, 1186 (2004).   DOI
5 S. Kohjiya, A. Katoh, J. Shimanuki, T. Hasegawa, and Y. Ikeda, "Nano-structural observation of carbon black dispersion in natural rubber matrix by three-dimensional transmission electron microscopy", J. Mater. Sci., 40, 2553 (2005).   DOI
6 S. Kohjiya, A. Katoh, T. Suda, J. Shimanuki, and Y. Ikeda, "Visualisation of carbon black networks in rubbery matrix by skeletonisation of 3D - TEM image", Polymer, 47, 3298 (2006).   DOI
7 T. P. Rieker, S. Misono, and F. Ehrburger-Dolle, "Small-angle X-ray scattering from carbon blacks: Crossover between the fractal and Porod regimes", Langmuir, 15, 914 (1999).   DOI
8 T. P. Rieker, M. Hindermann-Bischoff, and F. Ehrburger-Dolle, "Small-angle X-ray scattering study of the morphology of carbon black mass fractal aggregates in polymeric composites", Langmuir, 16, 5588 (2000).   DOI
9 F. Ehrburger-Dolle, M. Hindermann-Bischoff, F. Livet, F. Bley, C. Rochas, and E. Geissler, "Anisotropic ultra-small-angle X-ray scattering in carbon black filled polymers", Langmuir, 17, 329 (2001).   DOI
10 Y. M. Zhang, S. Ge, B. Tang, T. Koga, M. H. Rafailovich, J. C. Sokolov, D. G. Peiffer, Z. Li, A. J. Dias, K. O. McElrath, M. Y. Lin, S. K. Satija, S. G. Urquhart, H. Ade, and D. Nguyen, "Effect of carbon black and silica fillers in elastomer blends", Macromolecules, 34, 7056 (2001).   DOI
11 D. W. Schaefer, C. Suryawanshi, P. Pakdel, J. Ilavsky, and P. R. Jemian, "Challenges and opportunities in complex materials: silica-reinforced elastomers", Physica A, 314, 686 (2002).   DOI
12 E. Hoinkis, E. B. F. Lima, and P. Schubert-Bischoff, "A study of carbon black corax N330 with small-angle scattering of neutrons and X-rays", Langmuir, 20, 8823 (2004).   DOI
13 G. Beaucage, "Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension", J. Appl. Crystallogr., 29, 134 (1996).   DOI
14 T. Koga, M. Takenaka, K. Aizawa, M. Nakamura, and T. Hashimoto, "Structure factors of dispersible units of carbon black filler in rubbers", Langmuir, 21, 11409 (2005).   DOI
15 T. Koga, T. Hashimoto, M. Takenaka, K. Aizawa, N. Amino, M. Nakamura, D. Yamaguchi, and S. Koizumi, "New insight into hierarchical structures of carbon black dispersed in polymer matrices: A combined small-angle scattering study", Macromolecules, 41, 453 (2008).   DOI
16 Y. Shinohara, H. Kishimoto, K. Inoue, Y. Suzuki, A. Takeuchi, K. Uesugi, N. Yagi, K. Muraoka, T. Mizoguchi, and Y. Amemiya, "Characterization of two-dimensional ultra-small-angle X-ray scattering apparatus for application to rubber filled with spherical silica under elongation", J. Appl. Crystallogr., 40, S397 (2007).   DOI
17 G. Beaucage, "Approximations leading to a unified exponential power-law approach to small-angle scattering", J. Appl. Crystallogr., 28, 717 (1995).   DOI
18 G. Beaucage and D. W. Schaefer, "Structural Studies of Complex-Systems Using Small-Angle Scattering - a Unified Guinier Power-Law Approach", J. Non-Cryst. Solids, 172, 797 (1994).   DOI