• Title/Summary/Keyword: shear elastic wave

Search Result 175, Processing Time 0.018 seconds

Interpretation of Geophysical and Engineering Geology Data from a Test Site for Geological Field Trip in Jeungpyung, Chungbuk (충북 증평 지질학습장 시험부지에 대한 물리탐사 및 지질공학 자료의 해석)

  • Kim, Kwan-Soo;Yun, Hyun-Seok;Sa, Jin-Hyeon;Seo, Yong-Seok;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.339-352
    • /
    • 2016
  • The best way of investigating the physical and mechanical properties of subsurface materials is the combined interpretation of data from borehole geophysical surveys and geotechnical experiments with rock samples. In this study two surface seismic surveys with refraction and surface-wave method are alternatively conducted for downhole seismic surveys in test site for geological field trip in Jeungpyung, Chungbuk. P- and S-wave velocity structures are delineated by refraction and MASW (multichannel analysis of shear waves) methods, respectively. Possion's ratio section, reconstructed from P- and S-wave velocities, is correlated to the outcrop geological features consisting of reddish sedimentary rock, gray volcanic rock, and joints/fractures. In addition, rock samples representative for reddish sedimentary and gray volcanic features are geotechnically analyzed to provide physical, mechanical properties, and elastic modulus. Dynamic elastic moduli estimated from geophysical data is found to be higher than the one from geotechnical data. Reddish sedimentary rock characterized with low porosity and moisture content corresponds to the zone of low electrical resistivities and their small variations in the resistivity sections between the rainy and dry days. This trend suggests that the weathered gray volcanic rock and the nearby fractures with higher low porosity and moisture content are interpreted to be good carrier especially in rainy season.

Design of a ship model for hydro-elastic experiments in waves

  • Maron, Adolfo;Kapsenberg, Geert
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1130-1147
    • /
    • 2014
  • Large size ships have a very flexible construction resulting in low resonance frequencies of the structural eigen-modes. This feature increases the dynamic response of the structure on short period waves (springing) and on impulsive wave loads (whipping). This dynamic response in its turn increases both the fatigue damage and the ultimate load on the structure; these aspects illustrate the importance of including the dynamic response into the design loads for these ship types. Experiments have been carried out using a segmented scaled model of a container ship in a Seakeeping Basin. This paper describes the development of the model for these experiments; the choice was made to divide the hull into six rigid segments connected with a flexible beam. In order to model the typical feature of the open structure of the containership that the shear center is well below the keel line of the vessel, the beam was built into the model as low as possible. The model was instrumented with accelerometers and rotation rate gyroscopes on each segment, relative wave height meters and pressure gauges in the bow area. The beam was instrumented with strain gauges to measure the internal loads at the position of each of the cuts. Experiments have been carried out in regular waves at different amplitudes for the same wave period and in long crested irregular waves for a matrix of wave heights and periods. The results of the experiments are compared to results of calculations with a linear model based on potential flow theory that includes the effects of the flexural modes. Some of the tests were repeated with additional links between the segments to increase the model rigidity by several orders of magnitude, in order to compare the loads between a rigid and a flexible model.

A Study on the Reinforcement Effect of Low Flow Mortal Injection Method Using Field Test (현장시험을 이용한 저유동성 몰탈주입공법의 보강효과에 관한 연구)

  • Junyeong Jang;Gwangnam Lee;Daehyeon Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.599-609
    • /
    • 2023
  • In the seismic retrofitting of harbor breakwaters in Korea, the recovery rate is often uncertain due to site conditions and site conditions, and problems continue to arise. Therefore, in this study, we analyzed the recovery rate and compressive strength of the improved material through drilling survey by grouting confirmation method after applying low-fluidity mortar injection method, and furthermore, we checked the elastic modulus by downhole test and tomography to confirm the reinforcement effect of soft ground after ground improvement. The experimental results showed that the average shear wave velocity of the ground increased from 229 m/s to 288 m/s in BH-1 and BH-3 boreholes to a depth of 28.0 m, and the average shear wave velocity of the ground to a depth of 30.0 m tended to increase from 224 m/s to 282 m/s in the downhole test. This is believed to be a result of the increased stiffness of the ground after reinforcement. The results of the tomographic survey showed that the Vs of the soft ground of the sample at Site 1 increased from 113 m/s to 214 m/s, and the Vs of the sample at Site 2 increased from 120 m/s to 224 m/s. This shows that the stiffness of the ground after seismic reinforcement is reinforced with hard soil, as the Vs value satisfies 180 m/s to 360 m/s in the classification of rock quality according to shear wave velocity.

Evaluation of Mechanical Interactions Between Bentonite Buffer and Jointed Rock Using the Quasi-Static Resonant Column Test (유사정적 공진주 시험을 이용한 벤토나이트 완충재와 절리 암반의 역학적 상호작용 특성 평가)

  • Kim, Ji-Won;Kang, Seok-Jun;Kim, Jin-Seop;Cho, Gye-Chun
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.561-577
    • /
    • 2021
  • The compacted bentonite buffer in a geological repository for high-level radioactive waste disposal is saturated due to groundwater inflow. Saturation of the bentonite buffer results in bentonite swelling and bentonite penetration into the rock discontinuities present around the disposal hole. The penetrated bentonite is exposed to groundwater flow and can be eroded out of the repository, resulting in bentonite mass loss which can affect the physical integrity of the engineered barrier system. Hence, the evaluation of buffer-rock interactions and coupled behavior due to groundwater inflow and bentonite penetration is necessary to ensure long-term disposal safety. In this study, the effects of the bentonite penetration and swelling on the physical properties of jointed rock mass were evaluated using the quasi-static resonant column test. Jointed rock specimens with bentonite penetration were manufactured using Gyeongju bentonite and hollow cylindrical granite rock discs obtained from the KAERI underground research tunnel. The effects of vertical stress and saturation were assessed using the P-wave and S-wave velocities for intact rock, jointed rock and jointed rock with bentonite penetration specimens. The joint normal and joint shear stiffnesses of each joint condition were inferred from the wave velocity results assuming an equivalent continuum. The joint normal and joint shear stiffnesses obtained from this study can be used as input factors for future numerical analysis on the performance evaluation of geological waste disposal considering rock discontinuities.

A Study on Field and Laboratory Test Methods to Obtain Non-linear Deformation Characteristics of Soft Rocks (퇴적연암의 비선형특성 조사.시험기법에 관한 연구)

  • 김유성
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.63-78
    • /
    • 1996
  • Various type of in-situ and laboratary tests were performed in order to evaluate the stiffness of sedimentary soft rock. In triaxial compression tests of sedimentary soft rocks, axial strains from the axial displacement of the loading piston or specimen cap conventionally were considerably larger than those measured. tocally on the lateral surfaces of specimen, due to the bedding errors at the top and bottom ends of a specimen. A local deformation transducer was used to measure axial strains free from the bedding error ranging from 0.001% to about 1%. In ultra-sonic wave tests, the elastic modulus of unconfined spec imens was smaller than that of confined specimens, due probably to microfracks. Young's modulus Ed from ultra-sonic wave tests and those at small local strains from triaxial tests were similar, both of which agreed very well with Young's modulus Er from field shear wave velocities. Young'a modulus from the field behaviour was virtually similar to that obtained by reducing Er based on the strain level-dependency of stiffness evaluated by the triaxial tests.

  • PDF

Ultimate Strength Analysis of Connections of Floating Pendulum Wave Energy Converter (부유식 진자형 파력발전장치의 연결부 최종강도해석)

  • Sohn, Jung Min;Cheon, Ho Jeong;Shin, Seung Ho;Hong, Key Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.36-41
    • /
    • 2014
  • A floating offshore structure has high tendency to occur the buckling when compressive, bending and shear loads applied. When the buckling is occurred, in-plane stiffness of structure is remarkably decreased. And it has a harmful effect on the local structural strength as well as global structural strength. In the present study, it has been investigated the ultimate strength of tubular members which is located between a floater and a damping plate of the floating pendulum wave energy converter. Nonlinear finite element method is conducted using the initial imperfection according to 1st buckling mode which is obtained from the elastic buckling analysis. It is also noted the ultimate bending strength characteristic varying with a diameter, thickness and stiffeners of the tubular member.

Effects of Capillary Force on Salt Cementation Phenomenon (소금의 고결화 현상에서 모세관 효과)

  • Truong, Q. Hung;Byun, Yong-Hoon;Eom, Yong-Hun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.4
    • /
    • pp.37-45
    • /
    • 2010
  • Salt cementation, a typical naturally-cemented phenomenon, may occur due to water evaporation under the change of climate. Capillary force may influence the distribution of cement in granular soils. This study addresses the effect of capillary force on salt cementation using five different techniques: cone penetration test, electrical conductivity measurement, photographic imaging technique, nondestructive imaging technique, and process monitoring by elastic wave. Glass beads modeling a particulate media was mixed with salt water and then dried in an oven to create the cementation condition. Experimental results show that salt cementation highly concentrates at the top of the small particle size specimens and at the middle or the bottom of the large particle specimens. The predicted capillary heights are similar to the locations of high salt concentration in the cemented specimens. Five suggested methods show that the behavior of salt-cemented granular media heavily depends on the capillary force.

Analytical Method of Partial Standing Wave-Induced Seabed Response in Finite Soil Thickness under Arbitrary Reflection (임의반사율의 부분중복파동장에서 유한두께를 갖는 해저지반 내 지반응답의 해석법)

  • Lee, Kwang-Ho;Kim, Do-Sam;Kim, Kyu-Han;Kim, Dong-Wook;Shin, Bum-Shick
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.300-313
    • /
    • 2014
  • Most analytical solutions for wave-induced soil response have been mainly developed to investigate the influence of the progressive and standing waves on the seabed response in an infinite seabed. This paper presents a new analytical solution to the governing equations considering the wave-induced soil response for the partial standing wave fields with arbitrary reflectivity in a porous seabed of finite thickness, using the effective stress based on Biot's theory (Biot, 1941) and elastic foundation coupled with linear wave theory. The newly developed solution for wave-seabed interaction in seabed of finite depth has wide applicability as an analytical solutions because it can be easily extended to the previous analytical solutions by varying water depth and reflection ratio. For more realistic wave field, the partial standing waves caused by the breakwaters with arbitrary reflectivity are considered. The analytical solutions was verified by comparing with the previous results for a seabed of infinite thickness under the two-dimensional progressive and standing wave fields derived by Yamamoto et al.(1978) and Tsai & Lee(1994). Based on the analytical solutions derived in this study, the influence of water depth and wave period on the characteristics of the seabed response for the progressive, standing and partial standing wave fields in a seabed of finite thickness were carefully examined. The analytical solution shows that the soil response (including pore pressure, shear stress, horizontal and vertical effective stresses) for a seabed of finite thickness is quite different in an infinite seabed. In particular, this study also found that the wave-induced seabed response under the partial wave conditions was reduced compared with the standing wave fields, and depends on the reflection coefficient.

A Study on the Reinforcement of Rock Faults by Grouting (암석 절리면의 그라우팅에 의한 보강에 관한 연구)

  • Chun, Byung-Sik;Choi, Joong-Keun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.4
    • /
    • pp.45-51
    • /
    • 2003
  • Grouting materials in rock is grouted as vein type along the fault surface by the other way for soil and allow a change of characteristics in rock faults as a result of that. Therefore the deformation characteristics of rock faults after grouting differ as a direction and characteristic of grouted fault and stress condition of field rock. Thereby it must be analyzed the effect for deformation of rock according to characteristics of rock faults and characteristics of grouting materials to accurately evaluate the reinforced effect by grouting. But grouting method used in field until present depends on experience of workers, and inspection for those effects are evaluated by measurement of elastic wave velocity, permeability tests and etc. in field. In this study, it was investigated that the effects for shear characteristics of maximum shear strength, residual shear strength and etc. by comparison and analysis of test results which were worked by direct shear tests of rock faults with changing a type of grouting materials and the grouting depth(t) for average width(a) of fault surface roughness when OPC(Ordinary Portland Cement) and Micro cement was grouted in fault surface of field rock to evaluate characteristicsof the shear deformation for rock fault surface of dam by grouting.

  • PDF

Characteristics of Rigid-Soft Particle Mixtures with Size Ratio (입자크기비에 따른 강-연성 혼합재의 공학적 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Kim, Rae-Hyun;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.125-135
    • /
    • 2008
  • Rigid-soft particle mixtures, which consist of sand and rubber, are investigated for the understanding of the stress-deformation and elastic moduli. Specimens are prepared with various size ratio sr between sand and rubber particles, and different volumetric sand fraction sf. Small strain shear waves are measured under $K_o$-loading condition incorporated with the stress-deformation test by using oedometer cell with bender elements. The stress-deformation and small strain shear wave characteristics of rigid-soft particle mixtures show the transition from a rigid particle behavior regime to a soft particle behavior regime under fixed size ratio. A sudden rise of $\Lambda$ factor and the maximum value of the $\zeta$ exponent in $G_{max}=\;{\Lambda}({\sigma}'_{o}/kPa)^{\zeta}$ are observed at $sf\;{\approx}\;0.4{\sim}0.6$ regardless of the size ratio sf. Transition mixture shows high sensitivity to confining stress. The volume fraction for the minimum porosity may depend on the applied stress level in the rigid-soft particle mixtures because the soft rubber particles easily distort under load. In this experimental study, the size ratio and volumetric sand fraction are the important factors which determine the behavior of rigid and soft particle mixtures.