DOI QR코드

DOI QR Code

Evaluation of Mechanical Interactions Between Bentonite Buffer and Jointed Rock Using the Quasi-Static Resonant Column Test

유사정적 공진주 시험을 이용한 벤토나이트 완충재와 절리 암반의 역학적 상호작용 특성 평가

  • Kim, Ji-Won (Korea Atomic Energy Research Institute (KAERI)) ;
  • Kang, Seok-Jun (Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Jin-Seop (Korea Atomic Energy Research Institute (KAERI)) ;
  • Cho, Gye-Chun (Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2021.12.02
  • Accepted : 2021.12.14
  • Published : 2021.12.31

Abstract

The compacted bentonite buffer in a geological repository for high-level radioactive waste disposal is saturated due to groundwater inflow. Saturation of the bentonite buffer results in bentonite swelling and bentonite penetration into the rock discontinuities present around the disposal hole. The penetrated bentonite is exposed to groundwater flow and can be eroded out of the repository, resulting in bentonite mass loss which can affect the physical integrity of the engineered barrier system. Hence, the evaluation of buffer-rock interactions and coupled behavior due to groundwater inflow and bentonite penetration is necessary to ensure long-term disposal safety. In this study, the effects of the bentonite penetration and swelling on the physical properties of jointed rock mass were evaluated using the quasi-static resonant column test. Jointed rock specimens with bentonite penetration were manufactured using Gyeongju bentonite and hollow cylindrical granite rock discs obtained from the KAERI underground research tunnel. The effects of vertical stress and saturation were assessed using the P-wave and S-wave velocities for intact rock, jointed rock and jointed rock with bentonite penetration specimens. The joint normal and joint shear stiffnesses of each joint condition were inferred from the wave velocity results assuming an equivalent continuum. The joint normal and joint shear stiffnesses obtained from this study can be used as input factors for future numerical analysis on the performance evaluation of geological waste disposal considering rock discontinuities.

고준위방사성폐기물 심층처분장 내 압축 벤토나이트 완충재는 지하수 유입으로 인해 포화되어 팽윤하고, 이때 발생하는 팽윤압으로 인해 벤토나이트가 처분공 주변 암반 균열 내로 침투하게 된다. 침투한 벤토나이트는 지하수 흐름에 노출되어 공학적방벽 외부로 침식될 수 있고, 이러한 벤토나이트 완충재의 침식 및 질량 유실은 공학적방벽의 물리적 건전성에 악영향을 미칠 수 있다. 따라서 심층처분시스템의 장기 건전성을 평가하기 위해 지하수 유입과 완충재의 암반 균열 침투에 따른 완충재와 근계암반 사이의 상호작용이 평가되어야 한다. 본 연구에서는 유사정적 공진주 시험기를 이용하여 벤토나이트 완충재의 암반 균열 침투가 근계암반의 역학적 거동에 미치는 영향을 실험적으로 평가하였다. 국내 심층처분장의 완충재 재료로 고려되는 경주 벤토나이트와 한국원자력연구원의 지하처분연구시설에서 채취한 화강암 디스크를 이용해 완충재 충전물이 포함된 등가연속체 절리 암반 시편을 모사하였고, 수직응력 및 포화여부에 따른 탄성파 속도 변화를 측정하여 절리면의 절리수직강성 및 절리전단강성 변화를 유추하였다. 본 연구에서 수행한 실내실험 결과는 향후 불연속면을 고려한 처분시스템 성능평가 해석의 입력변수로 사용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

이 연구는 2021년도 정부(과학기술정보통신부)의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국연구재단의 지원(2021M2E1A1085193, 2020M2C9A1062949)을 받아 수행되었습니다.

References

  1. Baik, M.H. and Cho, W.J., 2005, An experimental study on the erosion of a compacted calcium bentonite block, Journal of Nuclear Fuel Cycle and Waste Technology, 3(4), 341-348.
  2. Baik, M.H., Cho, W.J. and Hahn, P.S., 2007, Erosion of bentonite particles at the interface of a compacted bentonite and a fractured granite, Engineering Geology, 91(2-4), 229-239. https://doi.org/10.1016/j.enggeo.2007.02.002
  3. Barton, N., 1973, Review of a new shear-strength criterion for rock joints, Engineering Geology, 7(4), 287-332. https://doi.org/10.1016/0013-7952(73)90013-6
  4. Biot, M.A., 1956a, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range, The Journal of the Acoustical Society of America, 28(2), 168-178. https://doi.org/10.1121/1.1908239
  5. Biot, M.A., 1956b, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range, The Journal of the Acoustical Society of America, 28(2), 179-191. https://doi.org/10.1121/1.1908241
  6. Biot, M.A., 1962, Mechanics of deformation and acoustic propagation in porous media, Journal of Applied Physics, 33(4), 1482-1498. https://doi.org/10.1063/1.1728759
  7. Brady, B.H. and Brown E.T., 1993, Rock mechanics: for underground mining. Springer science & business media.
  8. Brillouin, L., 1946, Wave propagation in periodic structures, New York: McGraw-Hill.
  9. Cha, M. S., Cho, G. C. and Baak, S. H., 2005, Elastic Wave Propagation in Jointed Rock Mass, In Proceedings of the Korean Geotechical Society Conference, Korean Geotechnical Society, 515-520.
  10. Cha, M., Cho, G.C. and Santamarina, J.C., 2009, Long-wavelength P-wave and S-wave propagation in jointed rock masses, Geophysics, 74(5), E205-E214. https://doi.org/10.1190/1.3196240
  11. Cha, M., Santamarina, J.C., Kim, H.S. and Cho, G.C., 2014, Small-strain stiffness, shear-wave velocity, and soil compressibility, Journal of Geotechnical and Geoenvironmental Engineering, 140(10), 06014011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001157
  12. Choi, Y.C., Kim, J.S., Park, T.J. and Kim, G.Y., 2017, Analysis for the Crack Characteristics of Rock and Concrete using Strain and Elastic Wave, Tunnel and Underground Space, 27(5), 253-262. https://doi.org/10.7474/TUS.2017.27.5.253
  13. Cook, N.G., 1992, Natural joints in rock: mechanical, hydraulic and seismic behaviour and properties under normal stress, In International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 29(3), 198-223. https://doi.org/10.1016/0148-9062(92)93656-5
  14. Duncan, N., 1969, Engineering Geology and Rock Mechanics. Vols. 1 and 2., Leonard Hill, London, UK.
  15. Fratta, D. and Santamarina, J.C., 2002, Shear wave propagation in jointed rock: State of stress, Geotechnique, 52(7), 495-505. https://doi.org/10.1680/geot.2002.52.7.495
  16. Gassmann, F., 1951, Uber die elastizitat poroser medien, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich, 96, 1-23.
  17. Goodman, R.E., 1989, Introduction to rock mechanics, 2nd ed.: John Wiley & Sons, Inc..
  18. Gutierrez, M., Oino, L.E., and Hoeg, K., 2000, The effect of fluid content on the mechanical behaviour of fractures in chalk, Rock Mechanics and Rock Engineering, 33(2), 93-117. https://doi.org/10.1007/s006030050037
  19. Hardin, B.O. and Richart Jr., F.E., 1963, Elastic wave velocities in granular soils, Journal of the Soil Mechanics and Foundations Division, 89(1), 33-65. https://doi.org/10.1061/JSFEAQ.0000493
  20. Hedstrom, M., Hansen, E.E., and Nilsson, U., 2016, Mechanisms and models for bentonite erosion, Technical Report TR-15-07, Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management Co.
  21. Horn, H.M. and Deere, D.U., 1962, Frictional characteristics of minerals, Geotechnique, 12(4), 319-335. https://doi.org/10.1680/geot.1962.12.4.319
  22. Hoskins, E.R., Jaeger, J.C., and Rosengren, K.J., 1968, A medium-scale direct friction experiment, In International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 5(2), 143-152. https://doi.org/10.1016/0148-9062(68)90030-2
  23. Jaeger, J.C., 1959, The frictional properties of joints in rock, Geofisica pura e applicata, 43(1), 148-158. https://doi.org/10.1007/BF01993552
  24. Karnland, O. and Birgersson, M., 2006, Montmorillonite stability: With special respect to KBS-3 conditions, Technical Report TR-06-11, Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management Co.
  25. Kang, S.S., Hirata, A., Obara, Y. and Haraguchi, N., 2006, Evaluation of rock damage zone using seismic logging method, Tunnel and Underground Space, 16(1), 50-57.
  26. Kim, J.W., Chong, S.H. and Cho, G.C., 2018, Experimental Characterization of Stress-and Strain-Dependent Stiffness in Grouted Rock Masses, Materials, 11(4), 524. https://doi.org/10.3390/ma11040524
  27. Kim, J.W., Chong, S.H. and Cho, G.C., 2021, Effects of Gouge Fill on Elastic Wave Propagation in Equivalent Continuum Jointed Rock Mass, Materials, 14(12), 3173. https://doi.org/10.3390/ma14123173
  28. Kim, T. and Jeon, S., 2016, A study on shear characteristics of a rock discontinuity under various thermal, hydraulic and mechanical conditions, Tunnel and Underground Space, 26(2), 68-86. https://doi.org/10.7474/TUS.2016.26.2.068
  29. Kolsky, H., 1963, Stress waves in solids, Vol. 1098, Courier Corporation, Chelmsford, MA, USA.
  30. Lee, C., Cho, W.J., Kim, J.S. and Kim, G.Y., 2020, Penetration of Compacted Bentonite into the Discontinuity in the Excavation Damaged Zone of Deposition Hole in the Geological Repository, Tunnel and Underground Space, 30(3), 193-213. https://doi.org/10.7474/TUS.2020.30.3.193
  31. Lee, J.O., Cho, W.J., and Kwon, S.K., 2011a, Thermal-hydro-mechanical Properties of Reference Bentonite Buffer for a Korean HLW Repository, Tunnel and Underground Space, 21(4), 264-273. https://doi.org/10.7474/TUS.2011.21.4.264
  32. Lee, J.S., Moon, J.K. and Choi, W.E., 2011b, Analysis of correlation between velocity of elastic wave and mechanical properties of rocks, Tunnel and Underground Space, 21(1), 50-65. https://doi.org/10.7474/TUS.2011.21.1.050
  33. Lee, S. and Chang, C., 2013, Laboratory experiments on fracture shearing induced by pore pressure increase, In Proceeding of fall joint conference of the geological science, Jeju, Korea, 314-315.
  34. Li, Z., Sheng, Y. and Reddish, D.J., 2005, Rock strength reduction and its potential environmental consequences as a result of groundwater rebound, In Proceeding of 9th international mine water congress, 513-519.
  35. Li, J., Ma, G. and Zhao, J., 2010, An equivalent viscoelastic model for rock mass with parallel joints, Journal of Geophysical Research: Solid Earth, 115(B3).
  36. Madsen, F. T. and Muller-Vonmoos, M., 1989, The swelling behaviour of clays, Applied Clay Science, 4(2), 143-156. https://doi.org/10.1016/0169-1317(89)90005-7
  37. Mavko, G., Mukerji, T. and Dvorkin, J., 1998, The rock physics handbook, Cambridge University Press.
  38. Mindlin, R.D., 1960, Waves and vibrations in isotropic, elastic plates, Structure Mechanics, 199-232.
  39. Mohd-Nordin, M.M., Song, K.I., Cho, G.C. and Mohamed, Z., 2014, Long-wavelength elastic wave propagation across naturally fractured rock masses, Rock Mechanics and Rock Engineering, 47(2), 561-573. https://doi.org/10.1007/s00603-013-0448-x
  40. Morrow, C.A., Moore, D.E. and Lockner, D.A., 2000, The effect of mineral bond strength and adsorbed water on fault gouge frictional strength, Geophysical research letters, 27(6), 815-818. https://doi.org/10.1029/1999GL008401
  41. Morrow, C., Radney, B. and Byerlee, J., 1992, Frictional strength and the effective pressure law of montmorillonite and lllite clays, International Geophysics, 51, 69-88. https://doi.org/10.1016/S0074-6142(08)62815-6
  42. Neretnieks, I., Liu, L. and Moreno, L., 2009, Mechanisms and models for bentonite erosion, Technical Report TR-09-35, Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management Co.
  43. Patton, F.D., 1966, Multiple modes of shear failure in rock, In 1st ISRM Congress, OnePetro.
  44. Pellet, F.L., Keshavarz, M. and Boulon, M., 2013, Influence of humidity conditions on shear strength of clay rock discontinuities, Engineering Geology, 157, 33-38. https://doi.org/10.1016/j.enggeo.2013.02.002
  45. Pusch, R., 1983, Stability of bentonite gels in crystalline rock- physical aspects, Technical Report TR-83-04, Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management Co.
  46. Rosengren, K.J., 1968, Rock mechanics of the Black Star open cut, Mount Isa., Ph.D. Dissertation, Australian National University, Australia.
  47. Schoenberg, M., 1980, Elastic wave behavior across linear slip interfaces, The Journal of the Acoustical Society of America, 68(5), 1516-1521. https://doi.org/10.1121/1.385077
  48. Schoenberg, M. and Muir, F., 1989, A calculus for finely layered anisotropic media, Geophysics, 54(5), 581-589. https://doi.org/10.1190/1.1442685
  49. Stokoe, K.H. and Santamarina, J.C., 2000, Seismic-wave-based testing in geotechnical engineering, In ISRM International Symposium, Melbourne, Australia, November 2000, OnePetro.
  50. Ulusay, R. and Karakul, H., 2016, Assessment of basic friction angles of various rock types from Turkey under dry, wet and submerged conditions and some considerations on tilt testing, Bulletin of Engineering Geology and the Environment, 75(4), 1-17. https://doi.org/10.1007/s10064-015-0722-0