• 제목/요약/키워드: shear displacement

검색결과 1,563건 처리시간 0.026초

비적합 변위모드를 이용한 4절점 평판휨요소의 개발 (Development of 4-node Plate Bending Element using Nonconforming Displacement Modes)

  • 박용명;최창근
    • 전산구조공학
    • /
    • 제10권2호
    • /
    • pp.179-188
    • /
    • 1997
  • 본 논문에서는 평판 구조물의 효율적인 해석을 위한 4절점 평판휨 요소를 개발하였다. 이 요소는 전단변형을 고려하기 위해 Mindlin평판이론에 의하여 유도하였다. 평판휨 문제에서 4절점요소와 같은 저차의 등매개변수 Mindlin평판요소는 전단강성을 실제보다 강하게 평가하기 때문에 얇은 평판에서는 요소의 기능을 발휘하지 못한다. 이러한 문제점을 극복하기 위해 4절점 요소에 5개의 비적합변위모드를 추가함으로써 개선된 결과를 얻을 수 있었으며, 개발된 요소는 유사영에너지모드를 발생시키지 않는다. 아주 얇은 평판에서도 요소의 형상과 무관하게 전단구속현상을 극복하였으며, 예제 해석으로부터 변위의 신속한 수렴성과 단면력의 분포가 양호한 결과를 얻을 수 있었다. 또한 요소형상비가 매우 큰 경우에도 좋은 결과를 얻을 수 있었다.

  • PDF

길이와 두께 비에 따른 두께 전단모드 압전소자의 공진 변위 및 압전특성 (Resonant Displacement and Piezoelectric Properties of Thickness Shear Mode Piezoelectric Devices According to Length/Thickness Ratio)

  • 박민호;류주현;홍재일;정영호
    • 한국전기전자재료학회논문지
    • /
    • 제24권6호
    • /
    • pp.463-467
    • /
    • 2011
  • In this study, thickness shear mode piezoelectric devices for AE sensor with excellent displacement and sensitivity characteristics were simulated using ATILA FEM program, and then fabricated. Displacement and electro mechanical coupling factors of the piezoelectric devices were investigated. The simulation results showed that excellent displacement and electromechanical coupling factor was obtained when the ratio of Length/Thickness was 1. The piezoelectric device of L/T= 1 exhibited the optimum values of fr= 150 kHz, displacement= $6.23{\times}10^{-8}$[m], $k_{15}$= 0.598. The results show that the thickness shear mode piezoelectric device is a promising candidate for the application of AE sensor piezoelectric device.

지진하중을 받는 철근콘크리트 원형교각의 전단성능곡선 모델 (Shear Capacity Curve Model for Circular RC Bridge Columns under Seismic Loads)

  • 이재훈;고성현;정영수
    • 한국지진공학회논문집
    • /
    • 제10권2호
    • /
    • pp.1-10
    • /
    • 2006
  • 형상비가 상대적으로 작은 철근콘크리트 교각에 지진작용으로 인한 반복 횡하중이 작용하면 초기단계와 중간단계의 변위에서는 휨 거동을 보이다가 최종변위단계에서는 전단에 의해 파괴되는 휨-전단 거동을 보인다. 휨-전단 파괴거동을 보이는 교각은 휨 파괴거동을 보이는 교각에 비하여 연성능력이 저하되므로, 내진설계 또는 내진성능평가에서 극한변위를 해석적으로 결정하기 위해서는 휨성능곡선과 함께 전단성능곡선 모델을 적용하여야 한다. 본 논문에서는 원형교각에 대한 기존 모델을 수정한 전단성능곡선 모델을 제안하였고, CALTRANS 모델, Aschheim등의 모델, Priestley 등의 모델, 제안모델의 특징을 비교하였다. 또 국내에서 수행된 실물크기 기둥 실험체를 대상으로 전단성능곡선 모델을 평가하였다. 제한된 범위의 소수 실험결과에 대한 적용으로서 일반화하기는 어려울 것이지만, 실험결과와 비교 검토한 결과 제안모델이 파괴형태의 예측과 변위성능 예측의 정확도에서 매우 우수한 것으로 평가되었다.

Stress Simulation on Suspended Porcelain Insulators with Cement Displacement

  • Han S. W.;Cho H. G.;Park G. H.;Lee D. I.;Choi I. H;Kim T. Y.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권3호
    • /
    • pp.19-24
    • /
    • 2003
  • The experimental and simulation study of insulator failure by cement growth on suspended insulators (16,500kgf) for transmission line was discussed. To get more practical and analytic calculation results, the advanced program was used. This analysis tool was possible to calculate stress behaviors with mechanical loading when cement displacement happened. From simulation results, the. cement displacement changed with linear according to temperature. The shear stress was about $7 kgf/mm^2$ at $0.07\%$ displacement provided from $200^{\circ}C$, then it could be seen that the cement would be fractured even if $0.07\%$ displacement acted, because the cement had about $7-9 kgf/mm^2$ flexure strength. The curve patterns of shear stress with the increase of mechanical loading were changed at $0.02\%$ as a turning point, when the cement displacement was over $0.02\%$ the shear stresses decreased reversely with the increase of mechanical loading. From analysis on porcelain body it was known that there were enough margin to protect the fracture of porcelain body before the cement

The expanded LE Morgenstern-Price method for slope stability analysis based on a force-displacement coupled mode

  • Deng, Dong-ping;Lu, Kuan;Wen, Sha-sha;Li, Liang
    • Geomechanics and Engineering
    • /
    • 제23권4호
    • /
    • pp.313-325
    • /
    • 2020
  • Slope displacement and factor of safety (FOS) of a slope are two aspects that reflect the stability of a slope. However, the traditional limit equilibrium (LE) methods only give the result of the slope FOS and cannot be used to solve for the slope displacement. Therefore, developing a LE method to obtain the results of the slope FOS and slope displacement has significance for engineering applications. Based on a force-displacement coupled mode, this work expands the LE Morgenstern-Price (M-P) method. Except for the mechanical equilibrium conditions of a sliding body adopted in the traditional M-P method, the present method introduces a nonlinear model of the shear stress and shear displacement. Moreover, the energy equation satisfied by a sliding body under a small slope displacement is also applied. Therefore, the double solutions of the slope FOS and horizontal slope displacement are established. Furthermore, the flow chart for the expanded LE M-P method is given. By comparisons and analyses of slope examples, the present method has close results with previous research and numerical simulation methods, thus verifying the feasibility of the present method. Thereafter, from the parametric analysis, the following conclusions are obtained: (1) the shear displacement parameters of the soil affect the horizontal slope displacement but have little effect on the slope FOS; and (2) the curves of the horizontal slope displacement vs. the minimum slope FOS could be fitted by a hyperbolic model, which would be beneficial to obtain the horizontal slope displacement for the slope in the critical state.

An investigation of seismic parameters of low yield strength steel plate shear walls

  • Soltani, Negin;Abedi, Karim;Poursha, Mehdi;Golabi, Hassan
    • Earthquakes and Structures
    • /
    • 제12권6호
    • /
    • pp.713-723
    • /
    • 2017
  • Steel plate shear walls (SPSWs) are effective lateral systems which have high initial stiffness, appropriate ductility and energy dissipation capability. Recently, steel plate shear walls with low yield point strength (LYP), were introduced and they attracted the attention of designers. Structures with this new system, besides using less steel, are more stable. In the present study, the effects of plates with low yield strength on the seismic design parameters of steel frames with steel plate shear walls are investigated. For this purpose, a variety of this kind of structures with different heights including the 2, 5, 10, 14 and 18-story buildings are designed based on the AISC seismic provisions. The structures are modeled using ANSYS finite element software and subjected to monotonic lateral loading. Parameters such as ductility (${\mu}$), ductility reduction ($R_{\mu}$), over-strength (${\Omega}_0$), displacement amplification ($C_d$) and behavior factor (R) of these structures are evaluated by carrying out the pushover analysis. Analysis results indicate that the ductility, over-strength and behavior factors decrease by increasing the number of stories. Also, the displacement amplification factor decreases by increasing the number of stories. Finally, the results were compared with the suggestions provided in the AISC code for steel plate shear walls. The results indicate that the values for over-strength, behavior and displacement amplification factors of LYP steel plate shear wall systems, are larger than those proposed by the AISC code for typical steel plate shear wall systems.

Free vibration and elastic analysis of shear-deformable non-symmetric thin-walled curved beams: A centroid-shear center formulation

  • Kim, Nam-Il;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • 제21권1호
    • /
    • pp.19-33
    • /
    • 2005
  • An improved shear deformable thin-walled curved beam theory to overcome the drawback of currently available beam theories is newly proposed for the spatially coupled free vibration and elastic analysis. For this, the displacement field considering the shear deformation effects is presented by introducing displacement parameters defined at the centroid and shear center axes. Next the elastic strain and kinetic energies considering the shear effects due to the shear forces and the restrained warping torsion are rigorously derived. Then the equilibrium equations are consistently derived for curved beams with non-symmetric thin-walled sections. It should be noticed that this formulation can be easily reduced to the warping-free beam theory by simply putting the sectional properties associated with warping to zero for curved beams with L- or T-shaped sections. Finally in order to illustrate the validity and the accuracy of this study, finite element solutions using the isoparametric curved beam elements are presented and compared with those in available references and ABAQUS's shell elements.

Lateral force-displacement ductility relationship of non-ductile squat RC columns rehabilitated using FRP confinement

  • Galal, K.
    • Structural Engineering and Mechanics
    • /
    • 제25권1호
    • /
    • pp.75-89
    • /
    • 2007
  • Post-earthquake reconnaissance and experimental research indicate that squat reinforced concrete (RC) columns in existing buildings or bridge piers are vulnerable to non-ductile shear failure. Recently, several experimental studies were conducted to investigate upgrading the shear resistance capacity of such columns in order to modify their failure mode to ductile one. Among these upgrading methods is the use of fibre-reinforced polymer (FRP) jackets. One of the preferred analytical tools to simulate the response of frame structures to earthquake loading is the lumped plasticity macromodels due to their computational efficiency and reasonable accuracy. In these models, the columns' nonlinear response is lumped at its ends. The most important input data for such type of models is the element's lateral force-displacement backbone curve. The objective of this study is to verify an analytical method to predict the lateral force-displacement ductility relationship of axially and laterally loaded rectangular RC squat columns retrofitted with FRP composites. The predicted relationship showed good accuracy when compared with tests available in the literature.

구동륜 슬립이 견인성능에 미치는 영향 (Effect of Slip on Tractive Performance of Driving Wheel)

  • 박원엽
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.234-243
    • /
    • 2002
  • When a vehicle is operated over sort terrain, torque(or soil thrust) applied to driving wheel brings about shear displacement far soil due to compression and shear failure of soil under tire. This shear displacement give rise to slip and a additional sinkage due to slip. This additional sinkage is usually referred to as slip-sinkage. The slip-sinkage is affected by soil conditions and inflation pressure of tire. This slip-sinkage influence tractive performance on driving wheel . We conducted the experimental study far investigating the effect of slip on sinkage and tractive performance of driving wheel, such as motion resistance, thrust and drawbar pull. The experiment was carried out over three different soil conditions(soft, hard and very hard soil) far a tire with three levels of inflation pressure(120kPa, 240kPa and 360kPa). The results of this study show qualitatively slipsinkage characteristics and slip-tractive performance relationships of driving wheel with soil conditions and inflation pressure of tire.

점착성 연약지반 주행차량의 동적거동 연구 (A Study on Dynamic Responses of Tracked Vehicle on Extremely Soft Cohesive Soil)

  • 김형우;홍섭;최종수
    • Ocean and Polar Research
    • /
    • 제26권2호
    • /
    • pp.323-332
    • /
    • 2004
  • This paper concerns about a study on dynamic responses of tracked vehicle on soft cohesive soil. For dynamic analyses of tracked vehicle, two different models were adopted, i.e. a single-body model and a multi-body model. The single-body vehicle model was assumed as a rigid body with 6-dof. The multi-body vehicle was modeled by using a commercial software, RecurDyn-LM. For the both models properties of cohesive soft soil were modeled by means of three relationships: pressure to sinkage, shear displacement to shear stress, and shear displacement to dynamic sinkage. Traveling performances of the two tracked vehicle models were compared through dynamic analyses in time domain.