• Title/Summary/Keyword: shear deformations

Search Result 333, Processing Time 0.03 seconds

Mechanical behavior of composite beam aluminum-sandwich honeycomb strengthened by imperfect FGM plate under thermo-mechanical loading

  • Bensatallah Tayeb;Rabahi Abderezak;Tahar Hassaine Daouadji
    • Coupled systems mechanics
    • /
    • v.13 no.2
    • /
    • pp.133-151
    • /
    • 2024
  • In this paper, an improved theoretical interfacial stress analysis is presented for simply supported composite aluminum- sandwich honeycomb beam strengthened by imperfect FGM plateusing linear elastic theory. The adherend shear deformations have been included in the present theoretical analyses by assuming a linear shear stress through the thickness of the adherends, while all existing solutions neglect this effect. Remarkable effect of shear deformations of adherends has been noted in the results.It is shown that both the sliding and the shear stress at the interface are influenced by the material and geometry parameters of the composite beam. This new solution is intended for applicationto composite beams made of all kinds of materials bonded with a thin plate. Finally, numerical comparisons between the existing solutions and the present new solution enable a clear appreciation of the effects of various parameters.

Analytical study on the influence of distributed beam vertical loading on seismic response of frame structures

  • Mergos, P.E.;Kappos, A.J.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.239-259
    • /
    • 2013
  • Typically, beams that form part of structural systems are subjected to vertical distributed loading along their length. Distributed loading affects moment and shear distribution, and consequently spread of inelasticity, along the beam length. However, the finite element models developed so far for seismic analysis of frame structures either ignore the effect of vertical distributed loading on spread of inelasticity or consider it in an approximate manner. In this paper, a beam-type finite element is developed, which is capable of considering accurately the effect of uniform distributed loading on spreading of inelastic deformations along the beam length. The proposed model consists of two gradual spread inelasticity sub-elements accounting explicitly for inelastic flexural and shear response. Following this approach, the effect of distributed loading on spreading of inelastic flexural and shear deformations is properly taken into account. The finite element is implemented in the seismic analysis of plane frame structures with beam members controlled either by flexure or shear. It is shown that to obtain accurate results the influence of distributed beam loading on spreading of inelastic deformations should be taken into account in the inelastic seismic analysis of frame structures.

Approximate Analysis of Shear Wall-Frame Structure For Seismic Design (전단벽-골조 시스템의 내진설계를 위한 근사해석법)

  • Yoo, Suk-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.99-106
    • /
    • 2019
  • A wall-frame structure resists horizontal load by the interaction between the flexural mode of the shear wall and the shear mode of the frame, which implies that the frame deflects only by reverse bending of the columns and girders, and that the columns are axially rigid. However, as the height of frame increases the shear mode of frame changes to flexural mode, which is due to the extension and shortening of the columns. An approximate hand method for estimating horizontal deflection and member forces in high-rise shear wall-frame structures subjected to horizontal loading is presented. The method is developed from the continuous medium theory for coupled walls and expressed in non-dimensional structural parameters. It accounts for bending deformations in all individual members as well as axial deformations in the columns. The deformations calculated from the presented approximate method and matrix analysis by computer program are compared. The presented approximate method is more accurate for the taller structures.

Effects of Shear Deformations on Buckling Loads of Tapered Columns with Both Clamped Ends (전단변형이 양단고정 변단면 기둥의 좌굴하중에 미치는 영향)

  • 이병구;이태은;안대순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.92-99
    • /
    • 2000
  • The nondimensional differential equations governing the buckling loads of tapered columns with both clamped ends and its boundary conditions are derived, in which the effects of shear deformations are included. These equations are solved numerically using a numerical integration technique and a bracketing method to obtain the buckling loads of columns. Four types of cross-sectional shape are considered in the numerical examples. The parametric studies of shear deformation effects on the buckling loads such as cross-sectional shape factor, shear coefficient, ratio of modulus of elasticity, slenderness ratio and section ratio are reported in tables and figures.

  • PDF

Effects of Shear Deformations on Buckling Loads of Tapered Columns (전단변형이 변단면기둥의 좌굴하중에 미치는 영향)

  • 이병구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.4
    • /
    • pp.56-63
    • /
    • 1994
  • The nondimensional differential equations governing the buckling loads of tapered columns and its houndarv conditions are derived, in which the effects of shear deformations are included. These equations are solved numerically using a numerical integration technique and a bracketing method to obtain the buckling loads of columns. Four types of cross-sectional shape with clamped-free end constraint are used in the numerical examples. The parametric studies of shear deformation effects on the buckling loads such as cross-sectional shape factor, shear coefficient, ratio of modulus of elasticity, slenderness ratio and section ratio are reported in tables and figures.

  • PDF

Anisotropic Constitutive Model at Large Viscoplastic Deformations (탄소성 대변형에 관한 비등방 구성방정식)

  • Cho, Han-Wook
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.178-184
    • /
    • 1995
  • A new combined isotropic/kinematic and orthotropic hardening viscoplastic model is proposed which can account for not only differential orientations but also preferred orientations of grains in n metal at finite plastic deformations with an introduction of multiple spin (rate of rotation) concept within the general framework of the model, the effects of anisotropy and constitutive spins will be discussed in conjunction with a closed-form solution for simple shear in n rigid-plastic material, which will be used to simulate experimental data of Montheillet, et al. (1984) for fixed-end tortion tests at finite plastic deformations.

  • PDF

Analytical and Experimental Study on the Damping of Vibrating Layered Plates Including the Effects of Shear and Thickness Deformation of the Adhesive Layer (접착제층의 전단과 법선변형 효과를 고려한 적층판의 진동감쇠특성 연구)

  • 김재호;박태학
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1244-1254
    • /
    • 1992
  • This paper investigates the vibrational damping characteristics of laminated plates composed of elastic, viscoelastic and elastic layers by theoretical and experimental methods. Laminated plates are in cylindrical bending and visco-elastic adhesive layer is assumed as the visco-elastic spring which takes damping effect through both shear and normal deformations. Governing equations oof laminated plates are derived in the form of simultaneous first order differential equations, which account for the longitudinal displacements, rotary inertia and shear deformations of elastic base plate and elastic constraining plate. The numerical calculations of the equations are illustrated by the applications to the cantilever beam in transverse vibration. The results of the solutions agree well with the experimental measurements in general. The damping effects due to the shear and thickness deformations in the adhesives are analyzed and it is shown that for thicker adhesives, the damping effect due to thickness deformation becomes significant and for thinner adhesives, due to shear deformation.

Rehabilitation of RC structural elements: Application for continuous beams bonded by composite plate under a prestressing force

  • Abderezak, Rabahi;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • v.11 no.2
    • /
    • pp.91-109
    • /
    • 2022
  • This paper presents a closed-form higher-order analysis of interfacial shear stresses in RC continuous beams strengthened with bonded prestressed laminates. For retrofitting reinforced concrete continuous beams is to bond fiber reinforced prestressed composite plates to their tensile faces. An important failure mode of such plated beams is the debonding of the composite plates from the concrete due to high level of stress concentration in the adhesive at the ends of the composite plate. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the RC continuous beams strengthened with bonded prestressed laminates. The theoretical predictions are compared with other existing solutions. A parametric study has been conducted to investigate the sensitivity of interface behavior to parameters such as laminate stiffness and the thickness of the laminate where all were found to have a marked effect on the magnitude of maximum shear and normal stress in the composite member.

Seismic Response of Exterior RC Column-to-Steel Beam Connections (II. Strength and Deformation) (콘크리트 기둥-강재 보 외부 접합부의 내진성능(II 강도 및 변형))

  • 조순호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.283-289
    • /
    • 2000
  • The panel shear and bearing strengths determining the seismic resistance of reinforced concrete column-to-steel beam connections are predicted by various methods for four previously tested exterior beam-column joints. The analytical approach to model the joint deformation is also examined. Several analyses incorporating the deformations of panel shear and bearing in the joint are demonstrated using a analyses incorporating the deformations of panel shear and bearing in the joint are demonstrated using a fairly simple connection model in the commercial packages such as Drain2dx and IDARC. The strength prediction results indicated that the ASCE method with the modifcation of the comprssion strut contribution is th most accurate. It is also considered that the analytical model presented including the joint deformation can be used for the overall analysis

  • PDF

Geometrically nonlinear analysis of plane frames with semi-rigid connections accounting for shear deformations

  • Gorgun, H.;Yilmaz, S.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.539-569
    • /
    • 2012
  • The behaviour of beam-to-column connections plays an important role in the analysis and design of steel structures. A computer-based method is presented for nonlinear steel frames with semi-rigid connections accounting for shear deformations. The analytical procedure employs transcendental stability functions to model the effect of axial force on the stiffness of members. The member stiffness matrix, and the fixed end forces for various loads were found. The nonlinear analysis method is applied for three planar steel structures. The method is readily implemented on a computer using matrix structural analysis techniques and is applicable for the efficient nonlinear analysis of frameworks.