• Title/Summary/Keyword: shear capacity

Search Result 1,931, Processing Time 0.034 seconds

Comparative Meat Qualities of Boston Butt Muscles (M. subscapularis) from Different Pig Breeds Available in Korean Market

  • Ali, Mahabbat;Baek, Ki Ho;Lee, Seong-Yun;Kim, Hyun Cheol;Park, Ji-Young;Jo, Cheorun;Jung, Jong Hyun;Park, Hwa Chun;Nam, Ki-Chang
    • Food Science of Animal Resources
    • /
    • v.41 no.1
    • /
    • pp.71-84
    • /
    • 2021
  • This study aimed to determine the effects of breed on meat quality characteristics of porcine Boston butt muscles (M. subscapularis) from three different pig breeds: Landrace×Yorkshire×Duroc (LYD), Berkshire, and Ibérico available in Korean market. Ibérico showed significantly higher fat content, yellowness (CIE b⁎), cooking loss, and lower shear force values than LYD and Berkshire. Moreover, the contents of oleic acid (18:1) and palmitic acid (16:0) were significantly higher in Ibérico breed, but stearic acid (18:0) was higher in LYD. As linoleic acid (18:2) and arachidonic acid (20:4) were higher in Berkshire sows as compared to the other breeds, atherogenicity and thrombogenicity indexes were significantly lower in Berkshire sow. Ibérico had lower the ω-6/ω-3 fatty acids ratio, and higher taurine and free amino acids compared with the others. Ibérico also showed significantly greater lipid oxidation, lower antioxidant capacity, and higher hypoxanthine contents, whereas the Berkshire had higher inosine-5'-monophosphate and lower K-index value as compared to the Ibérico. The breed did not impart any significant effect on the size and density of muscle fibers. Thus, quality characteristics of Boston butt varied from breed to breed, and certain consumer preferences for Ibérico can be explained, in part, by the unique quality characteristics imparted by higher contents of intramuscular fat, oleic acid, and free amino acids.

Different Effect of Sodium Chloride Replacement with Calcium Chloride on Proteolytic Enzyme Activities and Quality Characteristics of Spent Hen Samgyetang

  • Barido, Farouq Heidar;Lee, Sung Ki
    • Food Science of Animal Resources
    • /
    • v.41 no.5
    • /
    • pp.869-882
    • /
    • 2021
  • Sodium chloride (NaCl) replacement with calcium chloride (CaCl2) effect on protein solubility, proteolytic enzyme and quality characteristics of a chicken soup prepared from spent hen (SH) chicken were investigated. By means of immerse marination prior to cooking, a total of 60 skinless SH breast meat were randomly allocated into ten groups admitted to treatments with marinade solution containing sodium tripolyphosphate (STPP) and reduced percentage of NaCl with CaCl2 at 0%, 25%, 50%, 75%, and 100% at 4±2℃ for 20 h. STPP was adjusted to 0.5% for all treatments and NaCl replacement at 0% was used as control. The different methods, particularly boiling at 100℃ and retorting at 121℃, 1.5 kgf/cm2 for 60 minutes, were applied following marination. An upregulation of cathepsin-B and caspase-3 enzymes were a consequences from a higher percentage of CaCl2 within meat environment. Accordingly, modified the protein solubility in particular the myofibrillar and total protein solubility. In addition, a significant increase in water holding capacity (WHC), pH value, myofibril fragmentation index (MFI), and moisture content was obtained due to salt replacement (p<0.05). Limited effect was observed for shear force value, collagen content and cooking yield. Eventually, this study implied that although protelytic enzyme and protein solubility was upregulated by the replacement of NaCl with CaCl2 at >75%, extensive effect on texture properties was not observed. Therefore, NaCl replacement at 75% could be a promising strategy for quality improvement of SH chicken soup.

Optimum arrangement of stiffener on the buckling behaviour of stiffened composite panels with reinforced elliptical cutouts subjected to non-uniform edge load

  • Kalgutkar, Akshay Prakash;Banerjee, Sauvik;Rajanna, T.
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.427-446
    • /
    • 2022
  • Cutouts in the beams or plates are often unavoidable due to inspection, maintenance, ventilation, structural aesthetics purpose, and sometimes to lighten the structures. Therefore, there will be a substantial reduction in the strength of the structure due to the introduction of the cutouts. However, these cutouts can be reinforced with the different patterns of ribs (stiffener) to enhance the strength of the structure. The present study highlights the influence of the elliptical cutout reinforced with a different pattern of ribs on the stability performance of such stiffened composite panels subjected to non-uniform edge loads by employing the Finite element (FE) technique. In the present formulation, a 9-noded heterosis element is used to model the skin, and a 3-noded isoparametric beam element is used to simulate the rib that is attached around a cutout in different patterns. The displacement compatibility condition is employed between the plate and stiffener, and arbitrary orientations are taken care by introducing respective transformation matrices. The effect of shear deformation and rotary inertia are incorporated in the formulation. A new mesh configuration is developed to house the attached ribs around an elliptical cutout with different patterns. Initially, a study is performed on the panels with different stiffener schemes for various ply orientations and for different stiffener depth to width ratios (ds/bs) to determine an optimal stiffener configuration. Further, various parametric studies are conducted on an obtained optimal stiffened panel to understand the effect of cutout size, cutout orientation, panel aspect ratio, and boundary conditions. Finally, from the analysis, it can be observed that the arrangement of the stiffener attached to a panel has a major impact on the buckling capacity of the stiffened panel. The stiffener's depth to width ratio also significantly influences the buckling characteristic.

The influence of MgO on the radiation protection and mechanical properties of tellurite glasses

  • Hanfi, M.Y.;Sayyed, M.I.;Lacomme, E.;Akkurt, I.;Mahmoud, K.A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2000-2010
    • /
    • 2021
  • Mechanical moduli, such as Young's modulus (E), Bulks modulus (B), Shear modulus (S), longitudinal modulus (L), Poisson's ratio (σ) and micro Hardness (H) were theoretically calculated for (100-x)TeO2+x MgO glasses, where x = 10, 20, 30, 40 and 45 mol%, based on the Makishima-Mackenzie model. The estimated results showed that the mechanical moduli and the microhardness of the glasses were improved with the increase of the MgO contents in the TM glasses, while Poisson's ratio decreased with the increase in MgO content. Moreover, the radiation shielding capacity was evaluated for the studied TM glasses. Thus, the linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), transmission factor (TF) and half-value thickness (𝚫0.5) were simulated for gamma photon energies between 0.344 and 1.406 MeV. The simulated results showed that glass TM10 with 10 mol % MgO possess the highest LAC and varied in the range between 0.259 and 0.711 cm-1, while TM45 glass with 45 mol % MgO possess the lowest LAC and vary in the range between 0.223 and 0.587 cm-1 at gamma photon energies between 0.344 and 1.406 MeV. Furthermore, the BXCOM program was applied to calculate the effective atomic number (Zeff), equivalent atomic number (Zeq) and buildup factors (EBF and EABF) of the glasses. The effective removal cross-section for the fast neutrons (ERCSFN, ∑R) was also calculated theoretically. The received data depicts that the lowest ∑R was achieved for TM10 glasses, where ∑R = 0.0193 cm2 g-1, while TM45 possesses the highest ERCSFN where ∑R = 0.0215 cm2 g-1.

Vegetation Effects and Properties on Green Soil Blended with Cement-Based Materials for Slope Stability (시멘트 기반 재료를 혼합한 사면 안정용 녹생토의 물성 및 식생 영향성)

  • Choi, Yoon-Suk;Kim, Joo-Hyung;Cho, Young-Keun;Kim, Ho-Kyu;Park, Ok-Yun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.117-126
    • /
    • 2021
  • An experimental study was carried out to investigate the applicability of cement-based materials for green soil which is a soil for promoting plant growth. The results show that the shear strength of the green soil mixed with gypsum cement (No.3) was low, but the hardness (23.6mm) and pH value (7.4) was most suitable for the vegetation environment. In addition, the initial vegetation germination of green soil, which improved performance by adding a moisturizer, was slower than that of general green soil, and the conductivity value tended to be slightly higher. On the other hand, the slope adhesion of advanced green soil was high, and it was found that the plant growth rate and the regeneration capacity were superior after time passed.

The Comparison between Tanzanian Indigenous (Ufipa Breed) and Commercial Broiler (Ross Chicken) Meat on the Physicochemical Characteristics, Collagen and Nucleic Acid Contents

  • Mussa, Ngassa Julius;Kibonde, Suma Fahamu;Boonkum, Wuttigrai;Chankitisakul, Vibuntita
    • Food Science of Animal Resources
    • /
    • v.42 no.5
    • /
    • pp.833-848
    • /
    • 2022
  • The objective of this study was to characterize the meat quality traits that affect the texture and savory taste of Ufipa indigenous chickens by comparing the proximate composition, physical characteristics, collagen, and nucleic acid contents with those of commercial broilers. It was found that Ufipa chicken breast and thigh meat had a higher protein content (p<0.05) than broiler chicken meat, whereas the fat content was lower (p<0.01). The moisture content of thigh meat was lower in Ufipa chicken meat than in broiler chicken meat (p<0.05). Regarding meat color, broiler chickens had considerably higher L* and b* than Ufipa chickens in both the breast and the thigh meat, except for a* (p<0.01). Regarding water holding capacity, Ufipa chicken breast exhibited higher drip loss but lower thawing and cooking losses than broiler chicken (p<0.01). In contrast, its thigh meat had a much lower drip and thawing losses but higher cooking losses (p<0.01). The shear force of Ufipa chickens' breasts and thighs was higher than that of broiler chickens (p<0.05), while the amount of total collagen in the thigh meat was higher than that of broiler chickens (p<0.05). Additionally, the inosine-5'-monophosphate (IMP) of Ufipa chicken breast and thigh meat was higher than that of broiler meat (p<0.05). The principal component analysis of meat quality traits provides a correlation between the proximate and physical-chemical prosperties of both breeds with some contrast. In conclusion, the present study provides information on healthy food with good-tasting Ufipa indigenous chickens, which offer a promising market due to consumers' preferences.

Multi-Scale finite element investigations into the flexural behavior of lightweight concrete beams partially reinforced with steel fiber

  • Esmaeili, Jamshid;Ghaffarinia, Mahdi
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.393-405
    • /
    • 2022
  • Lightweight concrete is a superior material due to its light weight and high strength. There however remain significant lacunae in engineering knowledge with regards to shear failure of lightweight fiber reinforced concrete beams. The main aim of the present study is to investigate the optimum usage of steel fibers in lightweight fiber reinforced concrete (LWFRC). Multi-scale finite element model calibrated with experimental results is developed to study the effect of steel fibers on the mechanical properties of LWFRC beams. To decrease the amount of steel fibers, it is preferred to reinforce only the middle section of the LWFRC beams, where the flexural stresses are higher. For numerical simulation, a multi-scale finite element model was developed. The cement matrix was modeled as homogeneous and uniform material and both steel fibers and lightweight coarse aggregates were randomly distributed within the matrix. Considering more realistic assumptions, the bonding between fibers and cement matrix was considered with the Cohesive Zone Model (CZM) and its parameters were determined using the model update method. Furthermore, conformity of Load-Crack Mouth Opening Displacement (CMOD) curves obtained from numerical modeling and experimental test results of notched beams under center-point loading tests were investigated. Validating the finite element model results with experimental tests, the effects of fibers' volume fraction, and the length of the reinforced middle section, on flexural and residual strengths of LWFRC, were studied. Results indicate that using steel fibers in a specified length of the concrete beam with high flexural stresses, and considerable savings can be achieved in using steel fibers. Reducing the length of the reinforced middle section from 50 to 30 cm in specimens containing 10 kg/m3 of steel fibers, resulting in a considerable decrease of the used steel fibers by four times, whereas only a 7% reduction in bearing capacity was observed. Therefore, determining an appropriate length of the reinforced middle section is an essential parameter in reducing fibers, usage leading to more affordable construction costs.

THD Lubrication Analysis of a Surface-Textured Parallel Thrust Bearing with Rectangular Grooves: Part 1 - Effect of Film-Temperature Boundary Condition (사각형 그루브로 Surface Texturing한 평행 스러스트 베어링의 열유체윤활 해석: 제1보 - 유막온도경계조건의 영향)

  • Park, TaeJo;Kang, JeongGuk
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.267-273
    • /
    • 2022
  • Surface texturing is the latest technology for processing grooves or dimples on the friction surface of a machine. When appropriately applied, it can reduce friction and significantly increase durability. Despite many studies over the past 20 years, most are isothermal (ISO) analyses in which the viscosity of the lubricant is constant. In practice, the viscosity changes significantly owing to the heat generated by the viscous shear of the lubricant and film-temperature boundary condition (FTBC). Although many thermohydrodynamic (THD) analyses have been performed on various sliding bearings, only few results for surface-textured bearings have been reported. This study investigates the effects of the FTBC and groove number on the THD lubrication characteristics of a surface-textured parallel thrust bearing with multiple rectangular grooves. The continuity, Navier-Stokes, and energy equations with temperature-viscosity-density relations are numerically analyzed using a commercial computational fluid dynamics code, FLUENT. The results show the pressure and temperature distributions, variations of load-carrying capacity (LCC), and friction force with four FTBCs. The FTBCs greatly influence the lubrication characteristics of surface-textured parallel thrust bearings. A groove number that maximizes the LCC exists, which depends on the FTBC. ISO analysis overestimates the LCC but underestimates friction reduction. Additional analysis of various temperature boundary conditions is required for practical applications.

THD Lubrication Analysis of a Surface-Textured Parallel Thrust Bearing with Rectangular Grooves: Part 2 - Effect of Groove Depth (사각형 그루브로 Surface Texturing한 평행 스러스트 베어링의 열유체윤활 해석: 제2보 - 그루브 깊이의 영향)

  • TaeJo Park;JeongGuk Kang
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.21-27
    • /
    • 2023
  • Surface texturing is widely applied to friction surfaces of various machine elements. Most of the theoretical studies have focused on isothermal (ISO) analyses which consider constant lubricant viscosity. However, there have been limited studies on the effect of oil temperature increase owing to viscous shear. Following the first part of the present study that investigated the effects of film-temperature boundary condition (FTBC) and groove number on the thermohydrodynamic (THD) lubrication characteristics of a surface-textured parallel thrust bearing with multiple rectangular grooves, this study focuses on the effect of groove depths. Current study numerically analyzes the continuity, Navier-Stokes, and energy equations with temperature-viscosity-density relations using a commercial computational fluid dynamics (CFD) software, FLUENT. The results of variation in temperature, velocity, and pressure distributions as well as load-carrying capacity (LCC) and friction force indicate that groove depth and FTBC significantly influence the temperature distribution and pressure generation. The LCC is maximum near the groove depth at which the vortex starts, smaller than the ISO result. For intense grooves, the LCC of THD may be larger than that from ISO. The frictional force decreases as the groove becomes deeper, and decreases more significantly in the case of THD. The study shows that groove depth significantly influences the THD lubrication characteristics of surface-textured parallel thrust bearings.

Modified p-y curves to characterize the lateral behavior of helical piles

  • Hyeong-Joo, Kim;James Vincent, Reyes;Peter Rey, Dinoy;Tae-Woong, Park;Hyeong-Soo, Kim;Jun-Young, Kim
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.505-518
    • /
    • 2022
  • This study introduces soil resistance multipliers at locations encompassed by the zone of influence of the helix plate to consider the added lateral resistance provided to the helical pile. The zone of influence of a helix plate is a function of its diameter and serves as a boundary condition for the modified soil resistance springs. The concept is based on implementing p-multipliers as a reduction factor for piles in group action. The application of modified p-y springs in the analysis of helical piles allows for better characterization and understanding of the lateral behavior of helical piles, which will help further the development of design methods. To execute the proposed method, a finite difference program, HPCap (Helical Pile Capacity), was developed by the authors using Matlab. The program computes the deflection, shear force, bending moment, and soil resistance of the helical pile and allows the user to freely input the value of the zone of influence and Ω (a coefficient that affects the value of the p-multiplier). Results from ten full-scale lateral load tests on helical piles embedded at depths of 3.0 m with varying shaft diameters, shaft thicknesses, and helix configurations were analyzed to determine the zone of influence and the magnitude of the p-multipliers. The analysis determined that the value of the p-multipliers is influenced by the ratio between the pile embedment length and the shaft diameter (Dp), the effective helix diameter (Dh-Dp), and the zone of influence. Furthermore, the zone of influence is recommended to be 1.75 times the helix diameter (Dh). Using the numerical analysis method presented in this study, the predicted deflections of the various helical pile cases showed good agreement with the observed field test results.