• Title/Summary/Keyword: shear behavior and performance

Search Result 661, Processing Time 0.025 seconds

Structural Performance of Column-Slab Connection in Flat Plate System Using High Strength Concrete (고강도 콘크리트를 사용한 플랫 플레이트 구조의 기둥·슬래브 접합부 구조성능)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.97-105
    • /
    • 2006
  • The reinforced concrete flat plate system provides architectural flexibility, clear space, reduced building height, simple formwork, which consequently enhance constructibility. One of the serious problem in the flat plate system is brittle punching shear failure due to transfer of shear force and unbalanced moments in column-slab connection. Since the use of high strength concrete recently has become in practice for reinforced concrete structures, it is highly desired to establish the structural design method for flat plate construction using high strength concrete. In this paper, interior column-slab connection constructed with high strength concrete were tested under lateral and gravity loads to evaluate their strength and behavior. The test parameters were slab reinforcement ratio and the gravity load levels.

Evaluation of Reinforcement Detail Effect on Coupling Beams (연결보의 배근 상세 효과 평가)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.49-57
    • /
    • 2021
  • A study was conducted to secure structural performance as well as improve workability by improving the reinforcement details of special shear wall and coupling beams. Based on the specimen in which the existing diagonal bundle reinforcement and shear reinforcement were placed, the specimens replaced with thick diagonal reinforcing bars and the specimens replaced with horizontal reinforcing bars were selected as variables. As a result of the experiment, the specimen, which replaced the existing diagonal reinforcement with a thick-diameter reinforcement, showed a similar behavior to that of the basic specimen, and it was evaluated that it can be applied as an alternative to the details.

Effect of geometrical configuration on seismic behavior of GFRP-RC beam-column joints

  • Ghomia, Shervin K.;El-Salakawy, Ehab
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.313-326
    • /
    • 2020
  • Glass fiber-reinforced polymer (GFRP) bars have been introduced as an effective alternative for the conventional steel reinforcement in concrete structures to mitigate the costly consequences of steel corrosion. However, despite the superior performance of these composite materials in terms of corrosion, the effect of replacing steel reinforcement with GFRP on the seismic performance of concrete structures is not fully covered yet. To address some of the key parameters in the seismic behavior of GFRP-reinforced concrete (RC) structures, two full-scale beam-column joints reinforced with GFRP bars and stirrups were constructed and tested under two phases of loading, each simulating a severe ground motion. The objective was to investigate the effect of damage due to earthquakes on the service and ultimate behavior of GFRP-RC moment-resisting frames. The main parameters under investigation were geometrical configuration (interior or exterior beam-column joint) and joint shear stress. The performance of the specimens was measured in terms of lateral load-drift response, energy dissipation, mode of failure and stress distribution. Moreover, the effect of concrete damage due to earthquake loading on the performance of beam-column joints under service loading was investigated and a modified damage index was proposed to quantify the magnitude of damage in GFRP-RC beam-column joints under dynamic loading. Test results indicated that the geometrical configuration significantly affects the level of concrete damage and energy dissipation. Moreover, the level of residual damage in GFRP-RC beam-column joints after undergoing lateral displacements was related to reinforcement ratio of the main beams.

Predicting diagonal cracking strength of RC slender beams without stirrups using ANNs

  • Keskin, Riza S.O.;Arslan, Guray
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.697-715
    • /
    • 2013
  • Numerous studies have been conducted to understand the shear behavior of reinforced concrete (RC) beams since it is a complex phenomenon. The diagonal cracking strength of a RC beam is critical since it is essential for determining the minimum amount of stirrups and the contribution of concrete to the shear strength of the beam. Most of the existing equations predicting the diagonal cracking strength of RC beams are based on experimental data. A powerful computational tool for analyzing experimental data is an artificial neural network (ANN). Its advantage over conventional methods for empirical modeling is that it does not require any functional form and it can be easily updated whenever additional data is available. An ANN model was developed for predicting the diagonal cracking strength of RC slender beams without stirrups. It is shown that the performance of the ANN model over the experimental data considered in this study is better than the performances of six design code equations and twelve equations proposed by various researchers. In addition, a parametric study was conducted to study the effects of various parameters on the diagonal cracking strength of RC slender beams without stirrups upon verifying the model.

Evaluation of Structural Performance on Corbel in the Reinforced Concrete (철근콘크리트 코오벨 부재의 구조성능 평가 및 내력 추정)

  • Cho, Seong-Ho;Park, Tae-Won;Woo, Sung-Sik;Chung, Lan;Park, Hyun-Soo;Kim, Dong-Baek
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.58-64
    • /
    • 2008
  • In order to identify the exact behavior of corbel section, the horizontal force acting on corbel section should be considered as well as the vertical force. In this study, a new corbel section, which is economical and easy to construct, is developed by evaluating the exact strength of the section. Experiments were performed to verify the strengths of the proposed sections comparing with those of the currently used section. The summary of the experiment results are as follows: 1) In order to minimize the horizontal force effect, it was found that the use of pre-stressing was most effective, and that TB type corbel section is a most efficient section in terms of economy and workability. 2) The experimentally obtained strength of corbel section matched well with that estimated using shear friction theory. Therefore, it is concluded that shear friction theory would be very useful if a precise crack angie in the corbel section, which is pre-stressed by PS strings and threaded bolts, is available.

Performance of connection of Waffle Shape Precast Prestressed Concrete Slab Panels (와플(Waffle) 형상을 가지는 PC 패널의 접합 성능)

  • Heo, Seok-Jae;Kim, Hyeon-Jin;Ryu, Han-Gook;Choi, Kyoung-Kyu;Cho, Seung-Ho;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.305-308
    • /
    • 2008
  • This paper presents the results of an experimental study carried out Prestressed Concrete Slab System of WAffle Shape(WAS), was perfomed in order to inverstigate it connection shear behavior according to primary paramaters: connection interval, filling matarial. Specimen is produced in Precast Concrete factories and it comprised one WAS panel and two half WAS panels and then it is filled with packing. Within the ranges of the parameters of the connection details used in this test, connections can develop greater shear strength than the nominal shear strength and the design service load for parking structures.

  • PDF

Improved Degenerated Shell Finite Elements for Analysis of Shell Structures (쉘구조 해석을 위한 개선된 Degenerated 쉘유한요소)

  • 최창근;유승운
    • Computational Structural Engineering
    • /
    • v.3 no.1
    • /
    • pp.97-107
    • /
    • 1990
  • The development of an improved degenerated shell element is presented in this paper. In the formulation of this element, an enhanced interpolation of transverse shear strains in the natural coordinate system is used to overcome the shear locking problem ; the reduced integration technique in in-plane strains is applied to avoid the membrane locking behavior ; and selective addition of the nonconforming displacement modes improve the element performances. This element is free of serious locking problems and undesirable compatible or commutable spurious kinematic deformation modes, and passes the patch tests. To illustrate the performance of this improved degenerated shell element, some benchmark problems are presented. Numerical results indicate that the new element shows fast convergence and reliable solutions.

  • PDF

Flexural performance of composite walls under out-of-plane loads

  • Sabouri-Ghomi, Saeid;Nasri, Arman;Jahani, Younes;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.525-545
    • /
    • 2020
  • This paper presents a new structural system to use as retaining walls. In civil works, there is a general trend to use traditional reinforced concrete (RC) retaining walls to resist soil pressure. Despite their good resistance, RC retaining walls have some disadvantages such as need for huge temporary formworks, high dense reinforcing, low construction speed, etc. In the present work, a composite wall with only one steel plate (steel-concrete) is proposed to address the disadvantages of the RC walls. In the proposed system, steel plate is utilized not only as tensile reinforcement but also as a permanent formwork for the concrete. In order to evaluate the efficiency of the proposed SC composite system, an experimental program that includes nine SC composite wall specimens is developed. In this experimental study, the effects of different parameters such as distance between shear connectors, length of shear connectors, concrete ultimate strength, use of compressive steel plate and compressive steel reinforcement are investigated. In addition, a 3D finite element (FE) model for SC composite walls is proposed using the finite element program ABAQUS and load-displacement curves from FE analyses were compared against results obtained from physical testing. In all cases, the proposed FE model is reasonably accurate to predict the behavior of SC composite walls under out-of-plane loads. Results from experimental work and numerical study show that the SC composite wall system has high strength and ductile behavior under flexural loads. Furthermore, the design equations based on ACI code for calculating out-ofplate flexural and shear strength of SC composite walls are presented and compared to experimental database.

Evaluation of Inelastic Performance of a Reinforced Concrete Shear Wall-Frame System Designed by Resizing Algorithms (재분배 기법 적용에 따른 철근 콘크리트 전단벽-골조 시스템의 비선형 특성 평가)

  • An, Jin-Woo;Choi, Se-Woon;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.473-480
    • /
    • 2011
  • Recently, the resizing algorithms based on the displacement participation factors have been developed for sizing members to satisfy stiffness criteria. It is proved that this resizing algorithms made for utilizing worker's stiffness design are practical and rational due to the simplicity and convenience of the method. The resizing algorithm can be practically and effectively applied to drift design of buildings. However, the researches on the change of inelastic behavior by the resizing algorithm has been insufficient. To identify the effect on the inelastic behavior of buildings by the resizing method, this study used the reinforced concrete shear wall-frame example. Through the application of the resizing method, the weights of shear wall in the lower class and the weights of columns and beams in the upper class increased respectively. And the initial stiffness of the building increased and the ductility of the buildings had similar with that of the initial structure.

Evaluation on Fatigue Behavior of EP(Engineering Plastic) Friction Pendulum Bearing System (EP가 적용된 마찰 진자형 지진격리받침의 피로거동분석)

  • Choi, Jung-Youl;Park, Hee-Soo;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.703-708
    • /
    • 2020
  • As the risk of earthquakes increases recently, earthquake-resistant designs were getting interest. For this reason, this study applies that Friction pendulum-type seismic isolator is a device that attenuates seismic energy by friction and pendulum motion. The friction pendulum-type seismic isolator of this study is very easy to transport, install and maintain with light weight of metal by applying the slider using high strength engineering plastic. In addition, there is an advantage that the corrosion resistance is very excellent compared to the existing metal parts. However, there is concern about long-term durability by replacing metal materials. In this study, the frictional pendulum-type seismic isolator with EP was applied to compressive-shear test, repeated fatigue test, and ultimate load test after fatigue test, and analyzed the deformation and shear or properties after the test. As the results, the adequacy of long term fatigue durability was experimentally proven.