Browse > Article
http://dx.doi.org/10.12989/cac.2013.12.5.697

Predicting diagonal cracking strength of RC slender beams without stirrups using ANNs  

Keskin, Riza S.O. (Department of Civil Engineering, Yildiz Technical University)
Arslan, Guray (Department of Civil Engineering, Yildiz Technical University)
Publication Information
Computers and Concrete / v.12, no.5, 2013 , pp. 697-715 More about this Journal
Abstract
Numerous studies have been conducted to understand the shear behavior of reinforced concrete (RC) beams since it is a complex phenomenon. The diagonal cracking strength of a RC beam is critical since it is essential for determining the minimum amount of stirrups and the contribution of concrete to the shear strength of the beam. Most of the existing equations predicting the diagonal cracking strength of RC beams are based on experimental data. A powerful computational tool for analyzing experimental data is an artificial neural network (ANN). Its advantage over conventional methods for empirical modeling is that it does not require any functional form and it can be easily updated whenever additional data is available. An ANN model was developed for predicting the diagonal cracking strength of RC slender beams without stirrups. It is shown that the performance of the ANN model over the experimental data considered in this study is better than the performances of six design code equations and twelve equations proposed by various researchers. In addition, a parametric study was conducted to study the effects of various parameters on the diagonal cracking strength of RC slender beams without stirrups upon verifying the model.
Keywords
artificial neural networks; reinforced concrete; slender beams; diagonal cracking; shear strength;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Perez, J.L., Cladera, A., Rabunal, J.R. and Martinez-Abella, F. (2012), "Optimization of existing equations using a new genetic programming algorithm: application to the shear strength of reinforced concrete beams", Adv. Eng. Softw., 50, 82-96.   DOI   ScienceOn
2 Rebeiz, K.S. (1999), "Shear strength prediction for concrete members", ASCE J. Struct. Eng., 125(3), 301-308.   DOI   ScienceOn
3 Sanad, A. and Saka, M.P. (2001), "Prediction of ultimate shear strength of reinforced concrete deep beams using neural networks", ASCE J. Struct. Eng., 127(7), 818-828.   DOI   ScienceOn
4 Shah, A. and Ahmad, S. (2007), "An experimental investigation into shear capacity of high strength concrete beams", Asian J. Civ. Eng., 8(5), 549-562.
5 Shin, S.W., Lee, K.S, Moon, J.I. and Ghosh, S.K. (1999), "Shear strength of reinforced high-strength concrete beams with shear span-to-depth ratios between 1.5 and 2.5", ACI Struct. J., 96(4), 549-556.
6 Slowik, M. and Nowicki, T. (2012), "The analysis of diagonal crack propagation in concrete beams", Comp. Mater. Sci., 52, 261-267.   DOI   ScienceOn
7 Slowik, M. and Smarzewski, P. (2012), "Study of the scale effect on diagonal crack propagation in concrete beams", Comp. Mater. Sci., 64, 216-220.   DOI   ScienceOn
8 Sneed, L.H. and Ramirez, J.A. (2010), "Influence of effective depth on shear strength of concrete beams -experimental study", ACI Struct. J., 107(5), 554-562.
9 Tanarslan, H.M., Secer, M. and Kumanlioglu, A. (2012), "An approach for estimating the capacity of RC beams strengthened in shear with FRP reinforcements using artificial neural networks", Constr. Build.Mater., 30, 556-568.   DOI   ScienceOn
10 Taylor, R. (1960), "Some shear tests on reinforced concrete beams without shear reinforcement", Mag. Concrete Res., 12(36), 145-154.   DOI
11 Taylor, R. and Brewer, R.S. (1963), "The effect of the type of aggregate on the diagonal cracking of reinforced concrete beams", Mag. Concrete Res., 15(44), 87-92.   DOI
12 Turkish Standards Institute (2000), TS 500 Requirements for Design and Construction of Reinforced Concrete Structures, Ankara, Turkey.
13 Van den Berg, F.J. (1962), "Shear strength of reinforced concrete beams without web reinforcement part 2 - factors affecting load at diagonal cracking", ACI J. Proc., 59(11), 1587-1600.
14 Xie, Y., Ahmad, S.H., Yu, T., Hino, S. and Chung, W. (1994), "Shear ductility of reinforced concrete beams of normal and high-strength concrete", ACI Struct. J., 91(2), 140-149.
15 Zararis, P.D. and Papadakis, G.C. (2001), "Diagonal shear failure and size effect in RC beams without web reinforcement", ASCE J. Struct. Eng., 127(7), 733-742.   DOI   ScienceOn
16 Zsutty, T. (1971), "Shear strength prediction for separate catagories of simple beam tests", ACI J. Proc., 68(2), 138-143.
17 American Concrete Institute Committee 318 (ACI 318) (2011), Building Code Requirements for Structural Concrete (ACI 318M-11) and Commentary, Farmington Hills, MI.
18 Abdalla, J.A., Elsanosi, A. and Abdelwahab, A. (2007), "Modeling and simulation of shear resistance of R/C beams using artificial neural network", J. Frankl. Inst., 344(5), 741-756.   DOI   ScienceOn
19 Ahmad, S.H., Khaloo, A.R. and Poveda, A. (1986), "Shear capacity of reinforced high-strength concrete beams", ACI J. Proc., 83(2), 297-305.
20 Amani, J. and Moeini, R. (2012), "Prediction of shear strength of reinforced concrete beams using adaptive neuro-fuzzy inference system and artificial neural network", Sci. Iran., 19(2), 242-248.   DOI   ScienceOn
21 Arslan, G. (2012), "Diagonal tension failure of RC beams without stirrups", J. Civ. Eng. Manag., 18(2), 217-226.   DOI
22 Ashour, A.F., Alvarez, L.F. and Toropov, V.V. (2003), "Empirical modelling of shear strength of RC deep beams by genetic programming", Comput.Struct., 81(5), 331-338.   DOI   ScienceOn
23 Bazant, Z.P. and Kim, J.K.(1984), "Size effect in shear failure of longitudinally reinforced beams", ACI J. Proc., 81(5), 456-468.
24 Bazant, Z.P. and Kazemi, M.T. (1991), "Size effect on diagonal shear failure of beams without stirrups", ACI Struct. J., 88(3), 268-276.
25 Choi, K.K., Sherif, A.G., Taha, M.M.R. and Chung, L. (2009), "Shear strength of slender reinforced concrete beams without webreinforcement: a model using fuzzy set theory", Eng. Struct., 31(3), 768-777.   DOI   ScienceOn
26 Bazant, Z.P. and Sun, H.H. (1987), "Size effect in diagonal shear failure: influence of aggregate size and stirrups", ACI Mater. J., 84(4), 259-272.
27 Bresler, B. and Scordelis, A.C. (1963), "Shear strength of reinforced concrete beam", ACI J. Proc., 60(1), 51-74.
28 Cevik, A. and Ozturk, S. (2009), "Neuro-fuzzy model for shear strength of reinforced concrete beams without web reinforcement", Civ. Eng. Environ. Syst., 26(3), 263-277.   DOI   ScienceOn
29 Cladera, A. and Mari, A.R. (2004a), "Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part I: beams without stirrups", Eng. Struct., 26(7), 917-926.   DOI   ScienceOn
30 Cladera, A. and Mari, A.R. (2004b), "Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part II: beams with stirrups", Eng. Struct., 26(7), 927-936.   DOI   ScienceOn
31 Cladera, A. and Mari, A.R. (2005), "Experimental study on high-strength concrete beams failing in shear", Eng. Struct., 27(10), 1519-1527.   DOI   ScienceOn
32 Collins, M.P. and Kuchma, D.A. (1999), "How safe are our large, lightly reinforced concrete beams, slabs, and footings?", ACI Struct. J., 96(4), 482-490.
33 Comite Euro-International du Beton (CEB) (2010), CEB-FIP Model Code 2010, Lausanne, Switzerland.
34 Comite Euro-International du Beton (CEB) (1993), CEB-FIP Model Code 1990, Lausanne, Switzerland.
35 El-Chabib, H., Nehdi, M. and Said, A. (2006), "Predicting the effect of stirrups on shear strength of reinforced normal-strength concrete (NSC) and high--strength concrete (HSC) slender beams using artificial intelligence", Can. J. Civ. Eng., 33(8), 933-944.   DOI   ScienceOn
36 Cossio, R.D. and Siess, C.P. (1960), "Behavior and strength in shear of beams and frames without web reinforcement", ACI J. Proc., 56(2), 695-736.
37 Elzanaty, A.H., Nilson, A.H. and Slate, F.O. (1986), "Shear capacity of reinforced concrete beams using high strength concrete", ACI J. Proc., 83(2), 290-296.
38 El Chabib, H., Nehdi, M. and Said, A. (2005), "Predicting shear capacity of NSC and HSC slender beams without stirrups using artificial intelligence", Comput. Concrete, 2(1), 79-96.   DOI   ScienceOn
39 European Committee for Standardization (2004), Eurocode 2: Design of Concrete Structures - Part 1-1: General rules and rules for buildings, Brussels.
40 Foresee, F.D. and Hagan, M.T. (1997), "Gauss-Newton approximation to Bayesian regularization", Proceedings of the International Joint Conference on Neural Networks, 1930-1935.
41 Gandomi, A.H., Yun, G.J. and Alavi, A.H. (2013), "An evolutionary approach for modeling of shear strength of RC deep beams", Mater.Struct., 46(12), 2109-2119.   DOI   ScienceOn
42 Garip, E. (2011), "Shear strength of reinforced concrete beams without stirrups", MS.c. Thesis, Yildiz Technical University, Istanbul, Turkey.
43 Goh, A.T.C. (1995), "Prediction of ultimate shear strength of deep beams using neural networks", ACI Struct. J., 92(1), 28-32.
44 Hagan, M.T., Demuth, H.B. and Beale, M.H. (1996), Neural Network Design, PWS Publishing Company, Boston, MA.
45 Jung, S. and Kim, K.S. (2008), "Knowledge-based prediction of shear strength of concrete beams without shear reinforcement", Eng. Struct., 30(6), 1515-1525.   DOI   ScienceOn
46 Hamrat, M., Boulekbache, B., Chemrouk, M. and Amziane, S. (2010), "Shear behaviour of RC beams without stirrups made of normal strength and high strength concretes", Adv. Struct. Eng., 13(1), 29-41.   DOI   ScienceOn
47 Haykin, S.S. (1998), Neural Networks: A Comprehensive Foundation, (2nd Ed.), Prentice Hall, Englewood Cliffs, NJ.
48 Joint ASCE-ACI Committee 445 (1998), "Recent approaches to shear design of structural concrete: state-of-the-art-report", ASCE J. Struct. Eng., 124(12), 1375-1417.   DOI
49 Kani, G.N.J. (1964), "The riddle of shear failure and its solution", ACI J. Proc., 61(4), 441-468.
50 Khuntia, M. and Stojadinovic, B. (2001), "Shear strength of reinforced concrete beams without transverse reinforcement", ACI Struct. J., 98(5), 648-656.
51 Kim, D., Kim, W. and White, R.N. (1999), "Arch action in reinforced concrete beams - A rational prediction of shear strength", ACI Struct. J., 96(4), 586-593.
52 Kim, J.K. and Park, Y.D (1996), "Prediction of shear strength of reinforced concrete beams without web reinforcement", ACI Mater. J., 93(3), 213-222.
53 Krefeld, W.J. and Thurston, C.W. (1966), "Studies of the shear and diagonal tension strength of simply supported reinforced concrete beams", ACI J. Proc., 63(4), 451-476.
54 Mansour, M.Y., Dicleli, M., Lee, J.Y. and Zhang, J. (2004), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Eng. Struct., 26(6), 781-799.   DOI   ScienceOn
55 Mphonde, A.G. and Frantz, G.C. (1984), "Shear tests of high and low-strength concrete beams without stirrups", ACI J. Proc., 81(4), 350-357.
56 Mathey, R.G. and Watstein, D. (1963), "Shear strength of beams without web reinforcement", ACI J. Proc., 60(2), 183-208.
57 Mattock, A.H. (1969), "Diagonal tension cracking in concrete beams with axial forces", ASCE J. Struct. Div., 95(9), 1887-1900.
58 Moody, K.G., Viest, I.M., Elstner, R.C. and Hognestad, E. (1954), "Shear strength of reinforced concrete beams part 1 - tests of simple beams", ACI J. Proc., 51(12), 317-332.
59 Okamura, H. and Higai, T. (1980), "Proposed design equation for shear strength of RC beams without web reinforcement", Proceeding of Japan. Society of Civil Engineering, 300, 131-141.
60 Oreta, A.W.C. (2004), "Simulating size effect on shear strength of RC beams without stirrups using neural networks", Eng. Struct., 26(5), 681-691.   DOI   ScienceOn
61 Pendyala, R.S. and Mendis, P. (2000), "Experimental study on shear strength of high-strength concrete beams", ACI Struct. J., 97(4), 564-571.
62 Perera, R., Barchin, M., Arteaga, A. and De Diego, A. (2010), "Prediction of the ultimate strength of reinforced concrete beams FRP-strengthened in shear using neural networks", Compos. Part B-Eng., 41(4), 287-298.   DOI   ScienceOn
63 Perez, J.L., Cladera, A., Rabunal, J.R. and Martinez-Abella, F. (2010), "Optimal adjustment of EC-2 shear formulation for concrete elements without web reinforcement using genetic programming", Eng. Struct., 32(11), 3452-3466.   DOI   ScienceOn