• Title/Summary/Keyword: shear behavior and performance

Search Result 661, Processing Time 0.025 seconds

Structural Behavior and system Development of Wide Vertical Joints for the Pre-cast Concrete Walls (Wide Joint를 가진 PC벽체 수직접합부의 거동에 관한연구)

  • 최수연;신영수;홍건호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.897-902
    • /
    • 2000
  • In most of large panel pre-cast concrete system, the narrow joints have inefficiency to assemble several panels and structural problems due to their complicated process after construction. To improve, practically, structural performance and inefficiency to assemble, the behavior and strength of new wide joints method should be investigated experimentally. The result is that the shear force of wide joints is similar to that of loop joints, or more than. It seems that the use of wide joints is the possible methods in a construction field.

Seismic Performance of Special Shear Wall with Modified Details in Boundary Element Depending on Axial Load Ratio (축력비에 따른 수정된 단부 횡보강상세를 갖는 특수전단벽의 내진성능)

  • Chun, Young-Soo;Park, Ji-Young
    • Land and Housing Review
    • /
    • v.7 no.1
    • /
    • pp.31-41
    • /
    • 2016
  • In this paper, we propose experimental results, which target the major variables that influence the structural performance of a wall, as well as the resulting seismic and hysteretic behavior. Results also provide the basis for the application of performance based design by identifying the nonlinear hysteretic behavior of the wall with boundary element details recently proposed in previous study by Chun et al(2011). From the experimental results, the crack and fracture patterns of a specimen, which adopt the proposed boundary element details, showed similar tendencies regardless of whether axial force or high performance steel bars is applied. Furthermore, results show that the maximum strength of the specimen can be predicted accurately based on the design equation proposed by the standard. In addition, with a higher axial force, there is a tendency that both the initial load and maximum strength increase as deformation capacity reduces, requiring consideration of the reduced deformation capacity due to a high axial force. For walls under such high axial forces, using high performance steel bars is a very effective manner of enhancing deformation capacity. Therefore, reinforcing the plastic hinge region with boundary elements using high performance steel bars is preferable.

The flexural performance of laminated glass beams under elevated temperature

  • Huang, Xiaokun;Liu, Gang;Liu, Qiang;Bennison, Stephen J.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.603-612
    • /
    • 2014
  • A series of experimental work is carried out with the aim to understand the flexural performance of laminated glass (LG) beams using polyvinyl butyral (PVB) and Ionoplast interlayers subjected to short term duration loads in the circumstance of elevated temperature. The study is based on a total of 42 laboratory tests conducted in ambient temperature ranging from $25^{\circ}C$ to $80^{\circ}C$. The load duration is kept within 20 seconds. Through the tests, load-stress and load-deflection curves of the LG are established; appropriate analytical models for the LG are indentified; the effective thicknesses as well as the shear transfer coefficients of the LG are semi-empirically determined. The test results show that within the studied temperature range the bending stresses and deflections at mid-span of the LG develop linearly with respect to the applied loads. From $25^{\circ}C$ to $80^{\circ}C$ the flexural behavior of the PVB LG is found constantly between that of monolithic glass and layered glass having the same nominal thickness; the flexural behavior of the Ionoplast LG is equivalent to monolithic glass of the same nominal thickness until the temperature elevates up to $50^{\circ}C$. The test results reveal that in calculating the effective thicknesses of the PVB and Ionoplast LG, neglecting the shear capacities of the interlayers is uneconomic even when the ambient temperature is as high as $80^{\circ}C$. In the particular case of this study, the shear transfer coefficient of the PVB interlayer is found in a range from 0.62 to 0.14 while that of the Ionoplast interlayer is found in a range from 1.00 to 0.56 when the ambient temperature varies from $25^{\circ}C$ to $80^{\circ}C$.

Development of 8-node Flat Shell Element for the Analysis of Folded Plate Structures (절판 구조물의 해석을 위한 8절점 평면 첼 요소의 개발)

  • 최창근;한인선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.234-241
    • /
    • 1999
  • In this study, an improved 8-node flat shell element is presented for the analysis of shell structure, by combining 8-node membrane element with drilling degree-of-freedom and 8-node plate bending element based on the recently presented technique. Firstly, 8-node membrane element designated as CLM8 is presented in this paper. The element has drilling degree-of.freedom in addition to transitional degree-of-freedom. Therefore the element possesses 3 degrees-of-freedom per each node which as well as the improvement of the element behavior, permits an easy connection to other element with rotational degree-of -freedom. Secondly. 8-node flat shell element was composed by adding 8-node Mindlin plate bending element to the membrane element. The behavior of the introduced plate bending element is further improved by combined use of nonconforming displacement modes, selectively reduced integration scheme and assumed shear strain fields. The element passes in the patch test, doesn't show spurious mechanism and doesn't produce shear locking phenomena. Finally, Numerical examples are presented to show the performance of flat shell element developed in the present study.

  • PDF

Seismic Performance Evaluation of Circular RC Bridge Piers with Shear-Flexure Behavior (휨-전단 복합 거동을 보이는 RC 원형교각의 내진성능 평가)

  • 김병석;김영진;곽임종;조창백;조정래
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.29-36
    • /
    • 2001
  • Same as-built drawings in national roadway bridges in Korea were examined. As a result, many bridge piers were found whose aspect ratios are in the vicinity of 2.5. These columns are expected to do shear-flexure behaviour, but the previous research works considered flexure behaviour columns only. In the study, therefore, a shear-flexure behaviour column was selected as the model pier, and quasi static test on the full and 1/2 scale models was carried out. From the test results, the scale effect on the seismic performance evaluation was analyzed, and the seismic performance of the model bridge pier without seismic details was evaluated by the capacity spectrum method.

  • PDF

Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories

  • Rahmani, Omid;Asemani, S. Samane
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.175-187
    • /
    • 2020
  • The theories having been developed thus far account for higher-order variation of transverse shear strain through the depth of the beam and satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. A shear correction factor, therefore, is not required. In this paper, the effect of surface on the axial buckling and free vibration of nanobeams is studied using various refined higher-order shear deformation beam theories. Furthermore, these theories have strong similarities with Euler-Bernoulli beam theory in aspects such as equations of motion, boundary conditions, and expressions of the resultant stress. The equations of motion and boundary conditions were derived from Hamilton's principle. The resultant system of ordinary differential equations was solved analytically. The effects of the nanobeam length-to-thickness ratio, thickness, and modes on the buckling and free vibration of the nanobeams were also investigated. Finally, it was found that the buckling and free vibration behavior of a nanobeam is size-dependent and that surface effects and surface energy produce significant effects by increasing the ratio of surface area to bulk at nano-scale. The results indicated that surface effects influence the buckling and free vibration performance of nanobeams and that increasing the length-to-thickness increases the buckling and free vibration in various higher-order shear deformation beam theories. This study can assist in measuring the mechanical properties of nanobeams accurately and designing nanobeam-based devices and systems.

Probabilistic Q-system for rock classification considering shear wave propagation in jointed rock mass

  • Kim, Ji-Won;Chong, Song-Hun;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.449-460
    • /
    • 2022
  • Safe underground construction in a rock mass requires adequate ground investigation and effective determination of rock conditions. The estimation of rock mass behavior is difficult, because rock masses are innately anisotropic and heterogeneous at different scales and are affected by various environmental factors. Quantitative rock mass classification systems, such as the Q-system and rock mass rating, are widely used for characterization and engineering design. The measurement of rock classification parameters is subjective and can vary among observers, resulting in questionable accuracy. Geophysical investigation methods, such as seismic surveys, have also been used for ground characterization. Torsional shear wave propagation characteristics in cylindrical rods are equal to that in an infinite media. A probabilistic quantitative relationship between the Q-value and shear wave velocity is thus investigated considering long-wavelength wave propagation in equivalent continuum jointed rock masses. Individual Q-system parameters are correlated with stress-dependent shear wave velocities in jointed rocks using experimental and numerical methods. The relationship between the Q-value and the shear wave velocity is normalized using a defined reference condition. This relationship is further improved using probabilistic analysis to remove unrealistic data and to suggest a range of Q-values for a given wave velocity. The proposed probabilistic Q-value estimation is then compared with field measurements and cross-hole seismic test data to verify its applicability.

A Study on the Bond-Behavior of Bonded Concrete Overlays (접착식 콘크리트 덧씌우기 포장의 부착거동 연구)

  • Kim, Young-Kyu;Lee, Seung-Woo;Han, Seung-Hwan
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.31-45
    • /
    • 2012
  • PURPOSES: In Korea, rapid maintenance of distressed concrete pavement is required to prevent traffic jam of the highway. Asphalt concrete overlay has been used as a general maintenance method of construction for aged concrete pavement. AC overlay on existing concrete pavements experience various early distresses such as reflection crack, pothole and rutting, due to different physical characteristics between asphalt overlay and existing concrete pavement. Bonded concrete overlay(BCO) is a good alternative since it has advantages that can reduce various distresses during the service life since overlay material has similar properties with existing concrete pavements. Recently, BCO which uses the ultra rapid harding cement has been applied for maintenance of highway. BCO has advantage of structural performance since it does monolithic behave with existing pavement. Therefore, it is important to have a suitable bond strength criteria for securing performance of BCO. Bond strength criteria should be larger than normal tensile stress and horizontal shear stress occurred by traffic and environmental loading at bond interface. Normal tensile stress and horizontal shear stress need to estimated for the establishment of practical bond strength criteria. METHODS: This study aimed to estimate the bond stresses at the interface of BCO using the three dimensional finite element analysis. RESULTS: As a result of this study, major failure mode and maximum bond stress are evaluated through the analysis of normal tensile stress and horizontal shear stress for various traffic and environmental load conditions. CONCLUSIONS: It was known that normal tensile stresses are dominated by environmental loading, and, horizontal shear stresses are dominated by traffic loading. In addition, bond failure occurred by both of normal tensile stresses and horizontal shear stresses; however, normal tensile stresses are predominated over horizontal shear stresses.

Punching performance of RC slab-column connections with inner steel truss

  • Shi, Qingxuan;Ma, Ge;Guo, Jiangran;Ma, Chenchen
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.195-204
    • /
    • 2022
  • As a brittle failure mode, punching-shear failure can be widely found in traditional RC slab-column connections, which may lead to the entire collapse of a flat plate structure. In this paper, a novel RC slab-column connection with inner steel truss was proposed to enhance the punching strength. In the proposed connection, steel trusses, each of which was composed of four steel angles and a series of steel strips, were pre-assembled at the periphery of the column capital and behaved as transverse reinforcements. With the aim of exploring the punching behavior of this novel RC slab-column connection, a static punching test was conducted on two full-scaled RC slab specimens, and the crack patterns, failure modes, load-deflection and load-strain responses were thoroughly analyzed to explore the contribution of the applied inner steel trusses to the overall punching behavior. The test results indicated that all the test specimens suffered the typical punching-shear failure, and the higher punching strength and initial stiffness could be found in the specimen with inner steel trusses. The numerical models of tested specimens were analyzed in ABAQUS. These models were verified by comparing the results of the tests with the results of the analyzes, and subsequently the sensitivity of the punching capacity to different parameters was studied. Based on the test results, a modified critical shear crack theory, which could take the contribution of the steel trusses into account, was put forward to predict the punching strength of this novel RC slab-column connection, and the calculated results agreed well with the test results.

Seismic behavior and strength of L-shaped steel reinforced concrete column-concrete beam planar and spatial joints

  • Chen, Zongping;Xu, Deyi;Xu, Jinjun;Wang, Ni
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.337-352
    • /
    • 2021
  • The study presented experimental and numerical investigation on the seismic performance of steel reinforced concrete (SRC) L-shaped column- reinforced concrete (RC) beam joints. Various parameters described as steel configuration form, axial compressive ratio, loading angle, and the existence of slab were examined through 4 planar joints and 7 spatial joints. The characteristics of the load-displacement response included the bearing capacity, ductility, story drift ratio, energy-dissipating capacity, and stiffness degradation were analyzed. The results showed that shear failure and flexural failure in the beam tip were observed for planar joints and spatial joint, respectively. And RC joint with slab failed with the plastic hinge in the slab and bottom of the beam. The results indicated that hysteretic curves of spatial joints with solid-web steel were plumper than those with hollow-web specimens. The capacity of planar joints was higher than that of space joints, while the opposite was true for energy-dissipation capacity and ductility. The high compression ratio contributed to the increase in capacity and initial stiffness of the joint. The elastic and elastic-plastic story deformation capacity of L-shaped column frame joints satisfied the code requirement. A design formula of joint shear resistance based on the superposition theory and equilibrium plasticity truss model was proposed for engineering application.