• Title/Summary/Keyword: shear action

Search Result 375, Processing Time 0.026 seconds

Shear Resistant Mechanism into Base Components: Beam Action and Arch Action in Shear-Critical RC Members

  • Jeong, Je-Pyong;Kim, Woo
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • In the present paper, a behavioral model is proposed for study of the individual contributions to shear capacity in shear-critical reinforced concrete members. On the basis of the relationship between shear and bending moment (V = dM/dx) in beams subjected to combined shear and moment loads, the shear resistant mechanism is explicitly decoupled into the base components-beam action and arch action. Then the overall behavior of a beam is explained in terms of the combination of these two base components. The gross compatibility condition between the deformations associated with the two actions is formulated utilizing the truss idealization together with some approximations. From this compatibility condition, the ratio of the shear contribution by the tied arch action is determined. The performance of the model is examined by a comparison with the experimental data in literatures. The results show that the proposed model can explain beam shear behavior in consistent way with clear physical significance.

A Study on the Rational Shear Model by interpretation of Stuttgart Beam Shear Test (Stuttgart 콘크리트 보 전단실험의 재해석을 통한 합리적 전단모델 연구)

  • 김우;모귀석;정제평
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.884-889
    • /
    • 2003
  • Based on the reinterpretation of the well-known relationship between shear and the rate of change of bending moment in a reinforced concrete beam subject to combined shear and moment loads, the shortcomings of present truss models are discussed. The core of the theory is that a new perspective on the shear strength can be gained by viewing the internal stress filed in terms of the superposition of two base components of shear resistance; arch action and beam action. The arch action can be designed using the simple truss having curved compression chord, while the beam action between the two chords can be modeled using a parallel chord truss with MCFT or RA-STM. The compatibility of deformation associated to the two action is taken into account by employing a characteristic factor a. The new model was examined by the Stuttgart beam shear tests, and the results show that the present approach provides good estimates of stirrup contribution and concrete contributions.

  • PDF

Influence of Shear and Bond on Deformation Capacity of RC Beams (보의 변형능력에 미치는 전단과 부착응력의 영향)

  • Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.366-369
    • /
    • 2006
  • Deformability of RC members in shear is controlled by governing failure modes and material strength. Shear strength of members in D-regions has been explained by a direct load path (direct strut or arch action) and indirect load path (fan action or truss action). Indirect load path including truss action and fan action rely on bond along tension ties. Generally, superposition of two actions results in total shear strength when shear failure modes control. The ultimate deformation depends on controlling failure modes and thereby, their force transfer patterns. Proposed models are capable of explaining of limited deformability of RC members in D-regions.

  • PDF

Deformability models for flexural-shear failure of limited ductility (휨-전단 파괴의 한정 연성도 모형)

  • Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.261-264
    • /
    • 2006
  • Deformability of RC members in shear after flexural yielding is limited and controlled by governing failure modes and material strength. Shear strength of members in D-regions has been explained by a direct load path (direct strut or arch action) and indirect load path (fan action or truss action). Indirect load path including truss action and fan action rely on bond along tension ties. Generally, superposition of two actions results in total shear strength when shear failure modes control. The ultimate deformation depends on controlling failure modes and thereby, their force transfer patterns. Proposed models are capable of explaining of limited deformability of RC members in D-regions.

  • PDF

Shear Strength Incorporated with Internal Force State Factor in RC Slender Beams (내력상태계수 도입을 통한 RC보의 전단강도분석)

  • 정제평;김희정;김우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.912-917
    • /
    • 2003
  • In this paper a new truss modeling technique for describing the beam shear resistance mechanism is proposed based on the reinterpretation of the well-known relationship between shear and the rate of change of bending moment in a reinforced concrete beam subjected to combined shear and moment loads. The core of the model is that a new perspective on the shear resistance can be gained by viewing the internal stress filed in terms of the superposition of two base components of shear resistance; arch action and beam action. The arch action can be described as a simple tied-arch which is consisted of a curved compression chord and a tension tie of the longitudinal steel, while the beam action between the two chords can be modeled as a membrane shearing element with forming a smeared truss action. The compatibility of deformation associated to the two action is taken into account by employing an experimental factor or internal state force factor a. Then the base equation of V=dM/dx is numerically duplicated. The new model was examined by the 362 experimental results. The shear strength predicted by the internal force state factor a show better correlation with the tested values than the present shear design.

  • PDF

Redistribution of Internal Shear Forces in a Reinforced Concrete Beams (철근콘크리트 보의 전단력 재분배)

  • Rhee, Chang-Shin;Shin, Geun-Ok;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.362-365
    • /
    • 2006
  • This paper presents a model for evaluating the contribution by arch action to shear resistance in shear-critical RC beams. Based on the relationship between shear and bending moment in beams subjected to combined shear and bending, The behavior of a beam is explicitly divided into two base components of the flexural action and the tied arch action. The compatibility condition of the shear deformation that deviates from Bernoulli bending plane is formulated utilizing the smeared truss idealization with an inclined compression chord. From this shear compatibility condition in a beam, the shear contribution by the arch action is numerically decoupled.

  • PDF

A Prediction of Shear Strength Using Arch Models in Reinforced Concrete Beams without Web Reinforcement (아치모델을 이용한 복부보강이 안된 철근 콘크리트 보의 전단강도 산정)

  • 김대중
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.233-240
    • /
    • 1998
  • A rational expression, developed to predict the shear strength of reinforced concrete beams, is derived from the relationship between shear and the rate of change of bending moment along a beam coupled with experimental findings for the arch action. The proposed ultimate shear strength equation, arising from analytical premises and then calibrated with experimental data, is a similar form to the ACI 318 equation derived mainly from empirical approach. The proposed equation depends on the concrete compressive strength, amount of longitudinal steel content, and the shear span-to-depth ratio, and rationally reflects the shear resistance mechanism of combined beam action and arch action in reinforced concrete beams. The proposed equation applied to existing test data and the results were compared with those predicted by the ACI 318 equation and the Zsutty's equation.

Modeling of Shear Mechanism of RC Deep Beams Incorporating Bond Action between Re-Bar and Concrete (주근의 부착작용에 기초하는 깊은보의 전단저항 기구의 모델화)

  • Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.639-648
    • /
    • 2006
  • A shear experiment of one-way monotonic loading was carried out with the shear span ratio as the main experimental variable for reinforced concrete beam. Using the finite element analysis as the experimental analysis tool and the analysis method to compute the shear resistance of small shear span ratio, a new macro-model composed of crooked main strut and sub strut is proposed in consideration of the effect of bond action between re-bar and concrete based on the experimental result. The experimental finding affirmed the validity of the proposed macro-model when the shear span ratio was at or below 0.75 and confirmed that the experimental result was the most consistent with the computed analysis result when the effective factor of concrete compressive strength was set at 0.75.

Shear Strength Prediction of RC Beams without Stirrup using Transverse Strain Evaluation (전단보강철근이 없는 RC보의 수직변형률 평가를 통한 전단강도 산정)

  • Shin Geun Ok;Rhee Chang Shin;Jeong Jae Pyong;Kim Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.275-278
    • /
    • 2005
  • This paper presents a model for evaluating the contribution by arch action and frame action to shear resistance in shear-critical reinforced concrete beams without stirrup. The rotating angle softened truss model is employed to calculate the shear deformation of the web and the relative axial displacement of the compression and tension chord by the shear flow are also calculated. From this shear compatibility condition in a beam, the shear contribution by the arch action is numerically decoupled. The transverse strain obtained from the proposed model is selected for shear failure criterion. Using the failure criterion, shear strength of RC slender beams without stirrup is predicted.

  • PDF

Shear Behavioral Model based on Shear Deformation Compatibility in Reinforced Concrete Members (전단변형적합조건에 기반한 철근콘크리트 부재의 전단 해석 모델)

  • Kim, Woo;Rhee, Chang-Shin;Jeong, Jae-Pyong
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.379-388
    • /
    • 2006
  • This paper presents a model for evaluating the contribution by arch action to shear resistance in shear-critical reinforced concrete beams. Based on the relationship between shear and bending moment in beams subjected to combined shear and bending, the behavior of a beam is explicitly divided into two base components of the flexural action and the tied arch action. The compatibility condition of the shear deformation that deviates from Bernoulli bending plane is formulated utilizing the smeared truss idealization with an inclined compression chord. The Modified Compression Filed Theory is employed to calculate the shear deformation of the web, and the relative axial displacements of the compression and the tension chord by the shear flow are also calculated. From this shear compatibility condition in a beam, the shear contribution by the arch action is numerically decoupled. Then the validity of the model is examined by applying the model to some selected test beams in literatures. The results may confirm the rationale of the proposed behavioral model.