• 제목/요약/키워드: sharpness enhancement

검색결과 37건 처리시간 0.02초

경계선 특성을 고려한 관측자 선호 선예도 개선 방법 (Observer Preferable Sharpness Enhancement Considering Distributions of Edge Characteristics)

  • 홍상기;정재영;김대희;조맹섭
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.275-278
    • /
    • 2002
  • Sharpness enhancement, which strengthen the edge(high frequency) of image, is widely studied for image processing research area. In this paper, psychophysical experiment is conducted by the 20 observers with simple linear unsharp masking for sharpness enhancement. The experimental results extracted using z-score analysis and linear regression suggests observer preferable sharpness enhancement method for digital television.

  • PDF

Deep Learning-Based Reconstruction Algorithm With Lung Enhancement Filter for Chest CT: Effect on Image Quality and Ground Glass Nodule Sharpness

  • Min-Hee Hwang;Shinhyung Kang;Ji Won Lee;Geewon Lee
    • Korean Journal of Radiology
    • /
    • 제25권9호
    • /
    • pp.833-842
    • /
    • 2024
  • Objective: To assess the effect of a new lung enhancement filter combined with deep learning image reconstruction (DLIR) algorithm on image quality and ground-glass nodule (GGN) sharpness compared to hybrid iterative reconstruction or DLIR alone. Materials and Methods: Five artificial spherical GGNs with various densities (-250, -350, -450, -550, and -630 Hounsfield units) and 10 mm in diameter were placed in a thorax anthropomorphic phantom. Four scans at four different radiation dose levels were performed using a 256-slice CT (Revolution Apex CT, GE Healthcare). Each scan was reconstructed using three different reconstruction algorithms: adaptive statistical iterative reconstruction-V at a level of 50% (AR50), Truefidelity (TF), which is a DLIR method, and TF with a lung enhancement filter (TF + Lu). Thus, 12 sets of reconstructed images were obtained and analyzed. Image noise, signal-to-noise ratio, and contrast-to-noise ratio were compared among the three reconstruction algorithms. Nodule sharpness was compared among the three reconstruction algorithms using the full-width at half-maximum value. Furthermore, subjective image quality analysis was performed. Results: AR50 demonstrated the highest level of noise, which was decreased by using TF + Lu and TF alone (P = 0.001). TF + Lu significantly improved nodule sharpness at all radiation doses compared to TF alone (P = 0.001). The nodule sharpness of TF + Lu was similar to that of AR50. Using TF alone resulted in the lowest nodule sharpness. Conclusion: Adding a lung enhancement filter to DLIR (TF + Lu) significantly improved the nodule sharpness compared to DLIR alone (TF). TF + Lu can be an effective reconstruction technique to enhance image quality and GGN evaluation in ultralow-dose chest CT scans.

Local image enhancement using adaptive unsharp masking and noise filter

  • Ha, Tae-Ok;Song, Byung-Soo;Moon, Seong-Hak
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1692-1695
    • /
    • 2007
  • We describe the image enhancement method of applying two spatial filters with different characteristics adaptively. An adaptive method is introduced so that sharpness enhancement is performed only in regions where the image exhibits significant dynamics, while noise reduction is achieved in smooth regions. Simulation results show that the proposed method improved the image quality.

  • PDF

Depth-adaptive Sharpness Adjustments for Stereoscopic Perception Improvement and Hardware Implementation

  • Kim, Hak Gu;Kang, Jin Ku;Song, Byung Cheol
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권3호
    • /
    • pp.110-117
    • /
    • 2014
  • This paper reports a depth-adaptive sharpness adjustment algorithm for stereoscopic perception improvement, and presents its field-programmable gate array (FPGA) implementation results. The first step of the proposed algorithm was to estimate the depth information of an input stereo video on a block basis. Second, the objects in the input video were segmented according to their depths. Third, the sharpness of the foreground objects was enhanced and that of the background was maintained or weakened. This paper proposes a new sharpness enhancement algorithm to suppress visually annoying artifacts, such as jagging and halos. The simulation results show that the proposed algorithm can improve stereoscopic perception without intentional depth adjustments. In addition, the hardware architecture of the proposed algorithm was designed and implemented on a general-purpose FPGA board. Real-time processing for full high-definition stereo videos was accomplished using 30,278 look-up tables, 24,553 registers, and 1,794,297 bits of memory at an operating frequency of 200MHz.

신호 방향을 고려한 영상 화질 개선 (Image Enhancement Using Signal Direction)

  • 신동인;김원하
    • 대한전자공학회논문지SP
    • /
    • 제49권4호
    • /
    • pp.32-39
    • /
    • 2012
  • 본 논문에서는 DCT 영역에서 영상 신호의 방향과 변화의 크기에 따라 신호의 에너지를 조절하여 영상의 화질을 안정적으로 개선하는 방법을 개발한다. 이를 위하여 DCT 영역에서 영상 신호의 gradient를 측정하여 gradient의 방향과 크기로 영상의 sharpness, 국부 명암대비, 전역 명암대비에 해당하는 주파수 성분들의 에너지를 조절한다. 제안하는 기법은 기존의 기법들과 비교하여 블록화, 울림화 현상 발생과 잡음 증폭 없이 가장 우수한 화질로 향상시키는 것을 실험으로 보여준다.

관심 단층 제거 후 역투사법을 이용한 X-선 디지털 영상합성법에서의 단층영상 선명도 향상에 관한 연구 (Enhancement of Image Sharpness in X-ray Digital Tomosynthesis Using Self-Layer Subtraction Backprojection Method)

  • 손철순;조민국;임창휘;정민호;김호경;이성식
    • 비파괴검사학회지
    • /
    • 제27권1호
    • /
    • pp.8-14
    • /
    • 2007
  • 비파괴검사기법에 활용되고 있는 X-선 디지털 영상합성법(digital tomosynthesis)에서 단층영상의 선명도를 향상시킬 수 있는 방법을 개발하였다. 기존의 SAA (shift-and-add) 알고리즘은 blur artefact로 인하여 재구성된 단층영상이 매우 흐린 단점이 있다. 본 연구에서는 SAA에서 blur artefact가 발생되는 물리적 메커니즘에 착안하여, 최초 재구성된 단층영상에서 관심있는 단층의 데이터를 모두 0의 값으로 대체한 후 이를 다시 FP (forward projection) 및 BP (backprojection)를 수행하여 관심있는 단층에서의 blur artefact를 추출 보정하여 단층영상을 복원하고자 하였다. 개발한 알고리즘을 검증하기 위해 실제 실험 및 몬테칼로(Monte Carlo) 시뮬레이션을 통해 기존 SAA 방법과 비교하였으며, 단층영상의 선명도가 크게 향상됨을 확인하였다.

Comparison of GAN Deep Learning Methods for Underwater Optical Image Enhancement

  • Kim, Hong-Gi;Seo, Jung-Min;Kim, Soo Mee
    • 한국해양공학회지
    • /
    • 제36권1호
    • /
    • pp.32-40
    • /
    • 2022
  • Underwater optical images face various limitations that degrade the image quality compared with optical images taken in our atmosphere. Attenuation according to the wavelength of light and reflection by very small floating objects cause low contrast, blurry clarity, and color degradation in underwater images. We constructed an image data of the Korean sea and enhanced it by learning the characteristics of underwater images using the deep learning techniques of CycleGAN (cycle-consistent adversarial network), UGAN (underwater GAN), FUnIE-GAN (fast underwater image enhancement GAN). In addition, the underwater optical image was enhanced using the image processing technique of Image Fusion. For a quantitative performance comparison, UIQM (underwater image quality measure), which evaluates the performance of the enhancement in terms of colorfulness, sharpness, and contrast, and UCIQE (underwater color image quality evaluation), which evaluates the performance in terms of chroma, luminance, and saturation were calculated. For 100 underwater images taken in Korean seas, the average UIQMs of CycleGAN, UGAN, and FUnIE-GAN were 3.91, 3.42, and 2.66, respectively, and the average UCIQEs were measured to be 29.9, 26.77, and 22.88, respectively. The average UIQM and UCIQE of Image Fusion were 3.63 and 23.59, respectively. CycleGAN and UGAN qualitatively and quantitatively improved the image quality in various underwater environments, and FUnIE-GAN had performance differences depending on the underwater environment. Image Fusion showed good performance in terms of color correction and sharpness enhancement. It is expected that this method can be used for monitoring underwater works and the autonomous operation of unmanned vehicles by improving the visibility of underwater situations more accurately.

국부 구조 분석과 장면 적응 사전을 이용한 초고해상도 알고리즘 (Super-resolution Algorithm using Local Structure Analysis and Scene Adaptive Dictionary)

  • 최익현;임경원;송병철
    • 전자공학회논문지
    • /
    • 제50권4호
    • /
    • pp.144-154
    • /
    • 2013
  • 본 논문에서는 상호 보완 관계에 있는 초고해상도 기법과 선명도 증강 기법을 통합하여 전체적인 화질을 향상시키는 새로운 초고해상도 기법을 제안한다. 먼저 학습 과정을 통해 선명도 증강의 세기에 따라 다중의 사전을 구성하고, 고 해상도 영상을 합성할 때 영상의 국부 영역 특성에 따라 서로 다른 사전을 적응적으로 참조하도록 한다. 또한, 추가적인 후처리 과정을 통하여 저해상도 영상에 내재되어 있는 아티팩트가 초고해상도 처리에 의해 증폭되는 현상을 감소시켜 화질을 극대화한다. 모의실험 결과에 따르면 제안한 알고리즘은 객관적 화질 측면에서 비교 대상이 되는 알고리즘들에 비하여 우수함을 보였다. 특히, 영상의 선명도를 나타내는 CPBD 측면에서 bi-cubic 대비 0.3, Song 기법과 Fan 기법 대비 0.1 높게 나타났다. 또한, 주관적 화질 측면에서 영상의 질감 영역 및 경계 영역의 화질이 향상된 결과를 보이는 것을 확인하였다. 제한된 방법은 기존 방법 대비 17% 정도의 메모리만을 필요로 하므로 구현 관점에서도 장점이 있음을 알 수 있다.

복잡한 배경 제거를 통한 치아 X-ray 영상의 선예도 개선 (Sharpness Enhancement of Tooth X-ray Images Through Elimination of Complicated Background)

  • 나건우;류근호
    • Journal of Information Technology Applications and Management
    • /
    • 제30권1호
    • /
    • pp.11-19
    • /
    • 2023
  • To remove unnecessary background from tooth X-ray images and enhance the sharpness of tooth and gum images, image processing techniques including contrast adjustment and histogram equalization are used. The introduction of two methods for detecting the boundary of the tooth and gum region and separating the tooth and gum from the background. In both cases, the background of the tooth X-ray images could be removed as a result, improving the quality of the images. The proposed method improves MTF (Modulation Transfer Function), an image performance indicator, as a result of measuring MTF. The original image's spatial frequency ranged from 4.73 to 11.40 lp/mm at the 10% response, whereas the proposed image's spatial frequency ranged from 10.90 to 11.85 lp/mm, giving uniformly enhanced results. In contrast, tooth and gums could not be completely separated from the background using Apple's Lift subject from background function.

광각 영상을 위한 ELBP 분류기를 이용한 초해상도 기법과 CUDA 기반 가속화 (CUDA Acceleration of Super-Resolution Algorithm Using ELBP Classifier for Fisheye Images)

  • 최지훈;송병철
    • 전자공학회논문지
    • /
    • 제53권10호
    • /
    • pp.84-91
    • /
    • 2016
  • 최근 어라운드 뷰 모니터링 시스템이나 보안 시스템 등에서는 광각 카메라를 이용하여 사용자에게 영상을 제공하고 있다. 광각 카메라로 촬영된 영상은 보다 넓은 범위의 장면을 제공하는 장점이 있으나 영상에 왜곡이 존재하고 특히 영상 외곽 부분은 초점이 맞지 않아 영상의 선명도가 저하되는 단점이 존재한다. 따라서 광각 영상에 대하여 초해상도 기법을 적용할 경우 영상 외곽에서의 블러 영향이 그대로 남아 있어 고해상도 영상의 선명도가 저하되고 아티팩트가 발생하는 등 결과적으로 초해상도 기법의 성능 저하로 이어진다. 따라서 본 논문에서는 자기 유사성 기반의 전처리 기법을 적용하여 영상 외곽부에서의 화질 저하를 개선하고자 한다. 추가로 전체 알고리즘에 대하여 GPU 환경에서의 가속화를 수행하여 알고리즘의 가속성을 확인한다.