관심 단층 제거 후 역투사법을 이용한 X-선 디지털 영상합성법에서의 단층영상 선명도 향상에 관한 연구

Enhancement of Image Sharpness in X-ray Digital Tomosynthesis Using Self-Layer Subtraction Backprojection Method

  • 발행 : 2007.02.28

초록

비파괴검사기법에 활용되고 있는 X-선 디지털 영상합성법(digital tomosynthesis)에서 단층영상의 선명도를 향상시킬 수 있는 방법을 개발하였다. 기존의 SAA (shift-and-add) 알고리즘은 blur artefact로 인하여 재구성된 단층영상이 매우 흐린 단점이 있다. 본 연구에서는 SAA에서 blur artefact가 발생되는 물리적 메커니즘에 착안하여, 최초 재구성된 단층영상에서 관심있는 단층의 데이터를 모두 0의 값으로 대체한 후 이를 다시 FP (forward projection) 및 BP (backprojection)를 수행하여 관심있는 단층에서의 blur artefact를 추출 보정하여 단층영상을 복원하고자 하였다. 개발한 알고리즘을 검증하기 위해 실제 실험 및 몬테칼로(Monte Carlo) 시뮬레이션을 통해 기존 SAA 방법과 비교하였으며, 단층영상의 선명도가 크게 향상됨을 확인하였다.

X-ray digital tomosynthesis is widely used in the nondestructive testing and evaluation, especially for the printed circuit boards (PCBs). In this study, we propose a simple method to reduce the blur artefact, frequently claimed in the conventional digital tomosynthesis based on SAA (shift-and-add) algorithm, and thus restore the image sharpness. The proposed method is basically based on the SAA, but has a correction procedure by finding blur artefacts from the forward-and back-projection for the firstly obtained, manipulated backprojection data. The manipulation is the replacement of the original data at the POI (plane-of-interest) by zeros. This method has been compared with the conventional SAA algorithm using the experimental measurements and Monte Carlo simulation for the designed PCB phantom. The comparison showed a much enhancement of sharpness in the images obtained from the proposed method.

키워드

참고문헌

  1. C. Neubauer, 'Intelligent X-ray inspection for quality control of solder joints,' IEEE Trans. Compo Packag. Manufact. Technol., Vol. 20, No.2, pp. 111-120 (1997)
  2. H. K. Kim, J. K. Ahn, and G. Cho, 'Development of a lens-coupled CMOS detector for an X-ray inspection system,' Nucl. Instr. Meth. A, Vol. 545, pp. 210-216 (2005) https://doi.org/10.1016/j.nima.2005.01.310
  3. H. K. Kim, 'Cone-beam microtomography and its application,' J. Kor. Soc. Prec. Eng., Vol. 22, No.3, pp. 7-14 (2005)
  4. J. Zhou et al., 'Computed laminography for materials testing,' Appl Phys. Lett., Vol. 68, No. 24, pp. 3500-3502 (1996) https://doi.org/10.1063/1.115771
  5. D. G. Grant, 'Tomosynthesis: a threedimensional radiographic imaging technique,' IEEE Trans. Biomed. Eng., Vol. 19, pp. 20-28 (1972) https://doi.org/10.1109/TBME.1972.324154
  6. J. T. Dobbins III and D. J. Godfrey, 'Digital X-ray tomosynthesis: current state of the art and clinical potential,' Phys. Med. Biol., Vol. 48, pp. R65-R106 (2003) https://doi.org/10.1088/0031-9155/48/19/R01
  7. S. T. Kang and H. S. Cho, 'A projection method for reconstructing X-ray images of arbitrary cross-section,' NDT&E International, Vol. 32, pp. 9-20 (1999) https://doi.org/10.1016/S0963-8695(98)00031-0
  8. H. K. Kim, 'Sensor technology for digital radiography,' J. Kor. Soc. Prec. Eng., Vol. 22, No.8, pp. 7-16 (2005)
  9. S. Sone et al., 'Development of a high-resolution digital tomosynthesis system and its clinical application,' Radiographies, Vol. 11, No.5, pp. 807-822 (1991) https://doi.org/10.1148/radiographics.11.5.1947318
  10. S. Suryanarayanan et al., 'Comparison of tomosynthesis methods used with digital mammography,' Acad. Radiol., Vol. 7, No. 12, pp. 1085-1097 (2000) https://doi.org/10.1016/S1076-6332(00)80061-6
  11. T. Wu, R. H. Moore, E. A. Rafferty, and D. B. Kopans, 'A comparison of reconstruction algorithms for breast tomosynthesis,' Med. Phys., Vol. 31, No.9, pp. 2636-2647 (2004) https://doi.org/10.1118/1.1786692
  12. D. J. Godfrey, H. P. McAdams, and J. T. Dobbins III, 'Optimization of the matrix inversion tomosynthesis (MITS) impulse response and modulation transfer function characteristics for chest imaging,' Med. Phys., Vol. 33, No.3, pp. 655-667 (2006) https://doi.org/10.1118/1.2170398
  13. M. K. Cho, H. K. Kim, T. Craeve, and J.-M. Kim, 'Characterization of CMOS pixel detectors for digital X-ray imaging,' Key Engineering Materials, Vols. 321-323, pp. 1052-1055 (2006)
  14. $ MCNPX^{TM}$ Version 2.5.0, LA-UR-05-2675, Oak Ridge National Laboratory, USA (2005)