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INTRODUCTION

Today, artificial intelligence is one of the most popular 
fields in medical imaging research. Consequently, several 
CT vendors and software companies have released deep 
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learning image reconstruction (DLIR) algorithms in recent 
years [1]. Compared to hybrid iterative reconstructions, 
DLIR has been reported for its ability to lower radiation 
doses while maintaining diagnostic image quality due to 
improved noise reduction [1]. However, a study by Nam et 
al. [2] revealed that a vendor-specific DLIR produced the 
least amount of noise and better signal-to-noise ratio (SNR), 
but also showed image blurring at edge areas. Another study 
suggested that there is a possibility of decreased spatial 
resolution when DLIR is used for image reconstruction of 
examinations performed at very low radiation dose levels [3].

The relatively short examination time combined with 
the excellent spatial resolution has made CT an invaluable 
tool for evaluating lung lesions, and in particular, low-
dose chest CT has been established as a screening tool for 
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scanner (Revolution Apex CT, GE Healthcare, Milwaukee, 
WI, USA). Four separate scans were performed, each with a 
different radiation dose level (standard, 120 kVp/25 mAs, 
100 kVp/15 mAs, and 80 kVp/5 mAs). The standard protocol 
was performed at 120 kVp, and automated tube current 
modulation was regulated by the noise index set at a level of 
20. All other CT parameters were fixed: collimation, 80 mm; 
slice thickness, 1.25 mm; pitch, 1.531; and rotation time, 
0.35 seconds.

To measure the radiation exposure, the volume of the 
CT dose index and dose length-product (DLP), which were 
provided by the scanner system, were recorded. The effective 
radiation dose of each protocol was calculated by multiplying 
the DLP by the region-specific conversion coefficient κ of 
0.014 mSv/mGy·cm [12].

Each scan was reconstructed using three different 
reconstruction methods: adaptive statistical iterative 
reconstruction-V at a level of 50% (AR50), TF at medium 
level, and TF at medium level combined with a lung 
enhancement filter (TF + Lu). AR50 was reconstructed 
using a lung (sharp) kernel, while TF and TF + Lu were 
reconstructed using a standard kernel. Thus, a total 
of 12 sets of reconstructed images were obtained and 
analyzed. The reconstruction slice thickness was 1.25 mm. 
All reconstructed images were transferred to a dedicated 
workstation (Advantage Workstation 3.2, GE Healthcare) 
suitable for postprocessing and analysis of the CT images.

Objective Image Quality Assessment
A scientist with expertise in CT techniques placed 20 

circular 0.28-cm2 regions of interest (ROIs) for each of the 
airway, pulmonary vessel, fat tissue, and muscle on axial 
images under the supervision of a thoracic radiologist (with 
16 years of experience), i.e., 20 ROIs for the airway, 20 ROIs 
for pulmonary vessels, 20 ROIs for fat tissue, and 20 ROIs 
for muscles. The 20 ROIs for the airway were placed along 
the trachea. For other tissues, 3 ROIs (one for a pulmonary 
vessel, one for fat tissue, and one for muscle) were placed on 
each of 20 different axial slices. Thus, there were a total of 
80 ROIs in one image dataset. The scientist was blinded to 
the reconstruction methods, and all 80 ROIs were consistently 
positioned in identical locations (copied and pasted) across 
all 12 image sets. We obtained the mean attenuation (MA) 
and standard deviation (SD) from each ROI.

First, image noise was evaluated using SD values 
measured from the ROIs placed in the fat tissue. Second, 
the SNR was calculated at 20 ROIs in the airway and 20 

lung cancers [4]. Furthermore, current nodule guidelines 
also suggest a low-radiation CT technique for monitoring of 
lung nodules [5,6]. Consequently, lung nodules, particularly 
those exhibiting ground-glass characteristics, are frequently 
detected at low-dose chest CT scans [4]. Ground-glass 
nodules (GGNs) are defined as an area of increased 
attenuation that does not completely obscure the underlying 
bronchial and vascular structures [7]. This imaging finding 
is nonspecific and encompasses a variety of benign and 
malignant lesions, such as inflammation, infection, fibrosis, 
and a lepidic pattern of adenocarcinoma [8]. Apart from 
nodule size or growth, it has been confirmed that GGNs 
showing well-defined margins, lobulation, spiculation, and 
pleural indentation are more likely to be neoplastic lesions 
[9-11]. As a result, the presence of blotchy patterns or 
blurred images around the edges of GGNs on DLIR algorithm 
images could hold significant importance in assessing and 
monitoring GGNs.

Recently, a vendor released a lung enhancement filter (Lu) 
that can be applied to DLIR (Truefidelity [TF]). However, 
its effect on image quality and GGN margins, especially 
at ultralow-dose radiation, has not been evaluated. 
Therefore, this study aimed to assess the effect of a new 
lung enhancement filter combined with the DLIR algorithm 
on image quality and GGN sharpness compared to hybrid 
iterative reconstruction or DLIR alone.

MATERIALS AND METHODS

This study did not require Institutional Review Board 
approval because it did not involve any human participants 
or animal subjects.

Anthropomorphic Chest Phantom and Synthetic Lung 
Nodules

We used a multipurpose anthropomorphic chest phantom 
(LUNGMAN; Kyoto Kagaku Co., Kyoto, Japan) for the study. 
This phantom measured the same as a male human’s thorax, 
complete with pulmonary vessels and bronchi. Five GGNs 
with a spherical shape and 10-mm diameter were randomly 
placed in the phantom using double-sided tape. The GGNs 
had densities of -250, -350, -450, -550, and -630 Hounsfield 
units (HU).

CT Image Acquisition and Image Reconstruction 
Algorithms

All CT images were obtained using a 256-slice CT 
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ROIs in the vessel using the following equation: SNR = (CT 
Airway MA/CT Airway SD) and (CT Vessel MA/CT Vessel SD). 
Airway SNR #1 was calculated using the MA and SD from 
airway ROI #1, while airway SNR #2 was calculated using 
the MA and SD from airway ROI #2, and so forth. Third, 
airway contrast-to-noise ratio (CNR) was calculated for 20 
ROI pairs, each consisting of one airway ROI and one muscle 
ROI, selected sequentially from cranial to caudal direction. 
Similarly, vessel CNR was calculated for 20 ROI pairs, each 
consisting of one vessel ROI and one muscle ROI located 
on the same axial slice. For example, vessel CNR #1 was 
calculated using the MA from vessel ROI #1, and MA and SD 
from muscle ROI #1 located on the same axial slice. Vessel 
CNR #2 was calculated using the MA from vessel ROI #2, and 
MA and SD from muscle ROI #2 located on the same axial 
slice, and so forth. The following equations were used to 
calculate: CNR = (CT Airway MA - CT Muscle MA)/CT Muscle 
SD and (CT Vessel MA - CT Muscle MA)/CT Muscle SD.

For nodule sharpness, the same scientist set four identical 
linear lines on each nodule at different angles (horizontal, 
vertical, right diagonal, and left diagonal). Each line was set 
on a cross-sectional image and traversed through the center 
of the GGN, and intensity profiles were plotted for each line 
(Supplementary Fig. 1). The intensity profile graph was used 
to calculate the full-width at half-maximum (FWHM) value, 
with the four FWHM values for each nodule, resulting in 20 
measurements for each image dataset.

Subjective Image Quality Assessment
Two board-certified thoracic radiologists, one with 8 

years and the other with 16 years of experience in chest 
CT, visually examined the subjective image quality. The 
reviewers were blinded to the reconstruction algorithm 
and radiation dose and unaware of the other radiologist’s 
scoring. The reviewers independently assessed the entire 
image sets which were in random order. Each dataset was 

evaluated, and scoring was performed at ten different axial 
image slices in terms of nodule sharpness, image noise, and 
overall diagnostic acceptability using a 5-point scale, and 
image artifacts such as streak artifacts were assessed using a 
3-point scale (Supplementary Table 1) [13].

Statistical Analysis
All continuous data was expressed as the mean ± SD. 

To compare the differences between the reconstruction 
methods, statistical analysis using repeated measures 
analysis of variance with Tukey’s test as the post hoc 
test was performed. The subjective image quality values 
provided by the two reviewers were averaged for the analysis 
of subjective image quality assessment. Interobserver 
agreement in the subjective image quality was calculated 
using Cohen’s kappa analysis. A κ-value of <0.20 was 
considered poor agreement; a κ-value of 0.21–0.40 
indicated fair agreement; a κ-value of 0.41–0.60 was 
moderate agreement; a κ-value of 0.61–0.80 was substantial 
agreement; and a κ-value of ≥0.81 was excellent agreement 
[14]. A P-value of less than 0.05 was considered statistically 
significant. All statistical calculations were performed with 
SPSS (version 26.0; IBM Corp., Armonk, NY, USA).

RESULTS

Radiation Dose
Supplementary Table 2 summarizes the study protocol and 

radiation doses. The effective radiation dose was 1.7, 0.7, 
0.26, and 0.04 mSv for the standard protocol, 120 kVp/25 mAs, 
100 kVp/15 mAs, and 80 kVp/5 mAs, respectively.

Comparison of Objective CT Image Quality
As shown in Table 1, the three reconstruction algorithms 

had significant differences in the mean image noise across 
the 20 ROIs measured in the fat tissue. AR50 demonstrated 

Table 1. Image noise, as measured by SD values of 20 ROIs placed in the fat tissue

Radiation dose
Reconstruction method P

AR50 (n = 20 ROIs) TF (n = 20 ROIs) TF + Lu (n = 20 ROIs) P* AR50 vs. TF AR50 vs. TF + Lu TF vs. TF + Lu
Standard 59.20 ± 7.75 11.41 ± 1.22 37.83 ± 4.58 0.001 0.001 0.001 0.001
120 kVp 25 mAs   77.20 ± 10.27 14.55 ± 1.89 48.76 ± 6.08 0.001 0.001 0.001 0.001
100 kVp 15 mAs 116.60 ± 14.98 22.07 ± 2.89 75.91 ± 9.37 0.001 0.001 0.001 0.001
80 kVp 5 mAs 155.00 ± 26.82 37.13 ± 4.85 118.40 ± 13.39 0.001 0.001 0.001 0.001

The unit of the values is Hounsfield unit and the data are expressed as the mean ± SD. 
*P-values for repeated measures ANOVA. Otherwise indicated, the P-values are derived from the post-hoc Tukey’s test.
SD = standard deviation, ROIs = regions of interest, AR50 = adaptive statistical iterative reconstruction-V at a level of 50%, TF = Truefidelity, 
TF + Lu = Truefidelity with a lung enhancement filter
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the highest level of noise, which decreased with the use of 
TF + Lu and further decreased with the use of TF alone (P = 
0.001). This trend remained consistent across all radiation 
doses. As the radiation dose decreased, the level of the 
mean image noise increased.

Table 2 displays the SNR at multiple radiation doses and 
comparison among different reconstruction methods. TF 
consistently demonstrated higher SNR compared to TF + Lu 
and AR50 at all levels of radiation exposure. Notably, at the 
100 kVp 15 mAs scan for vessel regions, TF + Lu showed 
better SNR than AR50 (P = 0.037).

Table 3 demonstrates CNR at multiple radiation doses 
and comparison among different reconstruction methods. 
TF showed the best CNR, followed by TF + Lu, while AR50 
showed the lowest CNR (P = 0.001), except at the lowest 
radiation dose of 80 kVp 5 mAs. At this lowest radiation 

dose, TF demonstrated superior CNR when compared to 
AR50 and TF + Lu, but there was no significant difference 
between AR50 and TF + Lu.

The nodule sharpness, as measured by FWHM, is shown in 
Table 4 for multiple radiation doses and compared among 
different reconstruction methods. TF + Lu significantly 
improved nodule sharpness at all radiation doses compared 
to TF alone (Fig. 1). The nodule sharpness of TF + Lu was 
similar to that of AR50 (Fig. 2). There was no significant 
difference in nodule sharpness values between different 
radiation doses when using the same reconstruction 
algorithm (all P-values > 0.05).

Comparison of Subjective CT Image Quality
Table 5 shows the subjective image quality analysis 

results for sharpness, noise, artifacts, and overall diagnostic 

Table 2. Signal-to-noise ratio for airway and vessel

Radiation Region
Reconstruction method P

AR50 
(n = 20 ROIs)

TF 
(n = 20 ROIs)

TF + Lu 
(n = 20 ROIs)

P*
AR50 vs. 

TF
AR50 vs. 
TF + Lu

TF vs. 
TF + Lu

Standard Airway 11.16 ± 1.67 61.15 ± 17.26 17.38 ± 4.23 0.001 0.001 0.093 0.001
Vessel   0.30 ± 0.14 1.80 ± 0.43   0.47 ± 0.19 0.001 0.001 0.058 0.001

120 kVp 25 mAs Airway 10.02 ± 1.65 54.96 ± 23.67 15.76 ± 5.68 0.001 0.001 0.260 0.001
Vessel   0.22 ± 0.10 1.53 ± 0.52   0.40 ± 0.16 0.001 0.001 0.086 0.001

100 kVp 15 mAs Airway   7.90 ± 1.03 35.04 ± 8.80 10.46 ± 2.34 0.001 0.001 0.150 0.001
Vessel   0.22 ± 0.11 1.29 ± 0.33   0.37 ± 0.16 0.001 0.001 0.037 0.001

80 kVp 5 mAs Airway   6.22 ± 1.23 28.40 ± 52.35   6.51 ± 2.57 0.001 0.015 0.999 0.017
Vessel   0.28 ± 0.16 1.41 ± 0.50   0.40 ± 0.19 0.001 0.001 0.335 0.001

Data are expressed as the mean ± standard deviation. 
*P-values for repeated measures ANOVA. Otherwise indicated, the P-values are derived from the post-hoc Tukey’s test.
AR50 = adaptive statistical iterative reconstruction-V at a level of 50%, ROIs = regions of interest, TF = Truefidelity, TF + Lu = Truefidelity 
with a lung enhancement filter

Table 3. Contrast-to-noise ratio for airway and vessel

Radiation Region
Reconstruction method P

AR50 
(n = 20 ROI pairs)

TF 
(n = 20 ROI pairs)

TF + Lu 
(n = 20 ROI pairs)

P*
AR50 vs. 

TF
AR50 vs. 
TF + Lu

TF vs. 
TF + Lu

Standard Airway 12.23 ± 1.51 73.57 ± 10.18 20.63 ± 2.23 0.001 0.001 0.001 0.001
Vessel   0.73 ± 0.15 4.76 ± 0.64   1.30 ± 0.21 0.001 0.001 0.001 0.001

120 kVp 25 mAs Airway   9.80 ± 1.02 60.50 ± 6.44 16.94 ± 1.69 0.001 0.001 0.001 0.001
Vessel   0.59 ± 0.10 3.94 ± 0.55   1.09 ± 0.18 0.001 0.001 0.001 0.001

100 kVp 15 mAs Airway   6.58 ± 0.73 39.11 ± 3.78 10.88 ± 0.89 0.001 0.001 0.001 0.001
Vessel   0.43 ± 0.13 2.81 ± 0.43   0.76 ± 0.18 0.001 0.001 0.001 0.001

80 kVp 5 mAs Airway   5.83 ± 0.71 34.99 ± 50.59   7.93 ± 1.01 0.001 0.001 0.958 0.002
Vessel   0.48 ± 0.16 2.50 ± 0.58   0.69 ± 0.20 0.001 0.001 0.075 0.001

Data are expressed as the mean ± standard deviation. 
*P-values for repeated measures ANOVA. Otherwise indicated, the P-values are derived from the post-hoc Tukey’s test.
AR50 = adaptive statistical iterative reconstruction-V at a level of 50%, ROIs = regions of interest, TF = Truefidelity, TF + Lu = Truefidelity 
with a lung enhancement filter
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Fig. 1. Comparison of nodule sharpness of three GGNs with densities of -250, -450, and -630 HU, scanned at 120 kVp 25 mAs. Profile curves 
obtained from the yellow line crossing the center of the nodule demonstrate that TF + Lu improves the nodule sharpness compared to TF 
alone for all three GGNs. The nodule sharpness of TF + Lu was similar to that of AR50. GGN = ground-glass nodule, HU = Hounsfield unit, TF + 
Lu = Truefidelity with a lung enhancement filter, TF = Truefidelity, AR50 = adaptive statistical iterative reconstruction-V at a level of 50%

Table 4. Nodule sharpness, expressed by full-width at half-maximum

Radiation dose
Reconstruction method P

AR50 (n = 20*) TF (n = 20*) TF + Lu (n = 20*) P† AR50 vs. TF AR50 vs. TF + Lu TF vs. TF + Lu
Standard 15.16 ± 3.14 19.44 ± 4.26 14.04 ± 2.05 0.001 0.001 0.551 0.001
120 kVp 25 mAs 14.83 ± 2.62 18.37 ± 3.25 14.09 ± 2.04 0.001 0.001 0.658 0.001
100 kVp 15 mAs 14.65 ± 4.11 18.93 ± 4.15 13.44 ± 2.43 0.001 0.001 0.547 0.001
80 kVp 5 mAs 13.62 ± 3.02 18.28 ± 4.28 12.65 ± 2.24 0.001 0.001 0.621 0.001

Data are expressed as the mean ± standard deviation. 
*Four measurements for each nodule multiplied by 5 nodules, †P-values for repeated measures ANOVA. Otherwise indicated, the P-values 
are derived from the post-hoc Tukey’s test.
AR50 = adaptive statistical iterative reconstruction-V at a level of 50%, TF = Truefidelity, TF + Lu = Truefidelity with a lung enhancement 
filter
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acceptability. TF showed significantly better scores for 
image noise compared to AR50 at all radiation doses (P = 
0.001). Nodule sharpness was better with TF + Lu compared 
to TF at all radiation doses (P = 0.001).

Supplementary Table 3 demonstrates the agreement between 
the two readers for subjective image quality. According to 
each subjective image quality parameter, the analysis was 
moderate to excellent, ranging from 0.574 to 0.818, and 
according to each reconstruction algorithm, the analysis rated 
substantial to excellent, ranging from 0.654 to 0.841.

DISCUSSION

Using a lung enhancement filter with DLIR (TF + Lu) 
significantly increased the sharpness of GGNs at ultralow-
dose chest CT scans compared to DLIR alone (TF). Despite 
some reduction in image quality compared to DLIR alone (TF), 
incorporating a lung enhancement filter still showed better 
or similar results to hybrid iterative reconstruction (AR50).

The results of our study are consistent with prior studies, 
showing that DLIR substantially lowers image noise while 
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Fig. 2. Images of a ground-glass nodule (10 mm, -630 Hounsfield unit) at four radiation dose settings reconstructed with AR50, TF, 
and TF + Lu. AR50 = adaptive statistical iterative reconstruction-V at a level of 50%, TF = Truefidelity, TF + Lu = Truefidelity with a lung 
enhancement filter
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increasing both SNR and CNR compared to hybrid iterative 
reconstruction techniques [15-17]. As the use of traditional 
filtered back projection shifted to iterative reconstruction 
a couple of years prior, it may be the trend that iterative 
reconstruction will move onto DLIR in the near future [18]. 
Nevertheless, as earlier investigations have noted, the 
blurred appearance of DLIR may present difficulties in the 
assessment of GGNs [2,3]. For instance, another study using 
DLIR from a different vendor with low-dose chest CT found 
that DLIR effectively reduced image noise and enhanced 
image quality, similar to our study [19]. However, the study 
raised concerns about the performance of low-dose chest 
CT with DLIR in evaluating subsolid nodules and pulmonary 
emphysema [19]. Notably, this is the first report to compare 
the performance of a lung enhancement filter with DLIR 
alone and AR50. We found that image noise and CNR results 
were between the two reconstruction methods, while SNR 
was similar to that of AR50.

Another point that should be elaborated is that, the DLIR 
used in our study is available only with a standard kernel. 
Substantial reductions in radiation dose when obtaining 

ultralow or low-dose chest CT scans may increase the 
image noise and disrupt the margin boundaries, especially 
GGO components [20,21]. Considering this point, DLIR 
is valuable because it substantially reduces the image 
noise and increases image quality. However, when it 
comes to evaluating GGNs, a lung or sharp kernel is the 
preferred choice for most radiologists, and current nodule 
guidelines also advocate using a high-frequency (sharp) 
kernel [20]. Using a standard kernel to assess GGNs could 
make the margin ambiguous, precluding accurate margin 
characterization of especially small GGNs [20]. The lung 
enhancement filter is designed specifically for efficient 
filming of lung windows without additional reconstruction 
time. It enables a reconstruction option to edge enhance 
anatomical lung structures. Therefore, our study is 
noteworthy because we demonstrated that DLIR with a 
lung enhancement filter (TF + Lu) increased the sharpness 
of GGNs better or similar to AR50 using a lung kernel at 
ultralow-dose chest CT scans.

The reason why we chose GGNs instead of solid nodules 
is because the impact of radiation dose and iterative 

Table 5. Subjective image quality analysis results

Radiation dose
Image quality 
parameters

Reconstruction method P
AR50 (n = 10 
image slices)

TF (n = 10 
image slices)

TF + Lu (n = 10 
image slices)

P*
AR50 vs. 

TF
AR50 vs. 
TF + Lu

TF vs. 
TF + Lu

Standard Sharpness 5.00 ± 0.00 3.05 ± 0.22 5.00 ± 0.00 0.001 0.001 0.999 0.001
Noise 4.00 ± 0.00 5.00 ± 0.00 4.45 ± 0.50 0001 0.001 0.025 0.003
Artifact 3.00 ± 0.00 2.90 ± 0.30 2.95 ± 0.22 0.355 0.999 0.999 0.999
Overall diagnostic 
  acceptability

5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 0.999 0.999 0.999 0.999

120 kVp 25 mAs Sharpness 3.95 ± 0.22 3.00 ± 0.00 4.20 ± 0.40 0.001 0.001 0.812 0.001
Noise 3.95 ± 0.22 5.00 ± 0.00 4.90 ± 0.30 0.001 0.001 0.001 0.999
Artifact 2.80 ± 0.40 2.85 ± 0.36 2.95 ± 0.22 0.370 0.999 0.999 0.999
Overall diagnostic 
  acceptability

5.00 ± 0.00 4.85 ± 0.36 5.00 ± 0.00 0.044 0.999 0.999 0.999

100 kVp 15 mAs Sharpness 3.00 ± 0.00 2.35 ± 0.48 3.00 ± 0.00 0.001 0.001 0.999 0.001
Noise 3.00 ± 0.00 3.95 ± 0.8 4.00 ± 0.00 0.001 0.001 0.001 0.999
Artifact 2.70 ± 0.46 2.90 ± 0.30 2.85 ± 0.36 0.241 0.827 0.999 0.999
Overall diagnostic 
  acceptability

4.00 ± 0.00 3.90 ± 0.30 4.00 ± 0.00 0.131 0.999 0.999 0.999

80 kVp 5 mAs Sharpness 2.55 ± 0.67 2.05 ± 0.22 3.00 ± 0.00 0.001 0.007 0.096 0.001
Noise 1.85 ± 0.36 3.60 ± 0.80 2.85 ± 0.36 0.001 0.001 0.001 0.063
Artifact 1.20 ± 0.40 1.80 ± 0.40 1.30 ± 0.46 0.001 0.001 0.999 0.008
Overall diagnostic 
  acceptability

2.75 ± 0.43 2.80 ± 0.40 3.50 ± 0.50 0.001 0.999 0.001 0.001

Data are presented as mean ± standard deviation. 
*P-values for repeated measures ANOVA. Otherwise indicated, the P-values are derived from the post-hoc Tukey’s test.
AR50 = adaptive statistical iterative reconstruction-V at a level of 50%, TF = Truefidelity, TF + Lu = Truefidelity with a lung enhancement filter
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reconstruction type has a more significant effect on GGN 
measurement than on solid nodules [20,22]. Due to the 
naturally high contrast with the surrounding lung, solid 
nodules exhibit more distinct margins and less variability 
compared to GGNs [23].

Previous studies examining the image quality of different 
CT reconstruction algorithms usually relied on subjective 
judgements, with only a few objective measurements such 
as image noise, SNR, and CNR [24,25]. We assessed both 
subjective and objective image quality, including FWHM. 
Some recent studies have used edge-rise distance (ERD) to 
represent the clarity of edges [2,26,27]. Notably, we used 
FWHM, which is a numerical measurement of the width of 
a bump in a curve and is used for segmenting images and 
identifying edge features [28,29]. Some researchers have 
used FWHM to measure the edge sharpness of stenosis 
in coronary arteries across different CT scanners [30,31]. 
Modifications can be made to this method for its application 
in future studies on evaluating the image quality of CT scans.

There were several limitations in this study. First, 
as with any phantom study, the influence and clinical 
impact of DLIR with a lung enhancement filter on GGNs 
should be investigated in future human studies. Second, 
only spherical nodules were used in this study. A future 
study evaluating nodules with irregular shapes, such as 
lobulated or spiculated ones, which are more likely to be 
malignant than spherical nodules, would provide further 
valuable insights. Third, this study did not consider the 
effect of heterogeneity in the surrounding lung caused by 
diseases such as emphysema, pneumonia, or interstitial 
lung disease. Fourth, we did not compare our FWHM 
method with other quantitative measurements, such as 
ERD, that were beyond the scope of this study. However, 
we believe that similar results would have been obtained 
in terms of nodule sharpness and spatial resolution among 
different reconstruction methods. Fifth, due to increased 
noise in low radiation protocols and the minimal contrast 
between GGN and neighboring lung tissue, fully automated 
segmentation was somewhat limited in accurately measuring 
the volumetry of GGNs. Finally, reconstruction methods from 
different vendors and various radiation doses may generate 
discrepancies.

In conclusion, the addition of a lung enhancement filter to 
DLIR (TF + Lu) significantly improved the nodule sharpness 
compared to using DLIR alone. DLIR combined with a lung 
filter (TF + Lu) can be an effective reconstruction technique 
to enhance image quality and GGN evaluation in ultralow-

dose chest CT scans.
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