• Title/Summary/Keyword: shape optimization

Search Result 1,697, Processing Time 0.032 seconds

Improvement and validation of aerosol models for natural deposition mechanism in reactor containment

  • Jishen Li ;Bin Zhang ;Pengcheng Gao ;Fan Miao ;Jianqiang Shan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2628-2641
    • /
    • 2023
  • Nuclear safety is the lifeline for the development and application of nuclear energy. In severe accidents of pressurized water reactor (PWR), aerosols, as the main carrier of fission products, are suspended in the containment vessel, posing a potential threat of radioactive contamination caused by leakage into the environment. The gas-phase aerosols suspended in the containment will settle onto the wall or sump water through the natural deposition mechanism, thereby reducing atmospheric radioactivity. Aiming at the low accuracy of the aerosol model in the ISAA code, this paper improves the natural deposition model of aerosol in the containment. The aerosol dynamic shape factor was introduced to correct the natural deposition rate of non-spherical aerosols. Moreover, the gravity, Brownian diffusion, thermophoresis and diffusiophoresis deposition models were improved. In addition, ABCOVE, AHMED and LACE experiments were selected to validate and evaluate the improved ISAA code. According to the calculation results, the improved model can more accurately simulate the peak aerosol mass and respond to the influence of the containment pressure and temperature on the natural deposition rate of aerosols. At the same time, it can significantly improve the calculation accuracy of the residual mass of aerosols in the containment. The performance of improved ISAA can meet the requirements for analyzing the natural deposition behavior of aerosol in containment of advanced PWRs in severe accident. In the future, further optimization will be made to address the problems found in the current aerosol model.

Analytical study on cable shape and its lateral and vertical sags for earth-anchored suspension bridges with spatial cables

  • Gen-min Tian;Wen-ming Zhang;Jia-qi Chang;Zhao Liu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.255-272
    • /
    • 2023
  • Spatial cable systems can provide more transverse stiffness and torsional stiffness without sacrificing the vertical bearing capacity compared with conventional vertical cable systems, which is quite lucrative for long-span earth-anchored suspension bridges' development. Higher economy highlights the importance of refined form-finding analysis. Meanwhile, the internal connection between the lateral and vertical sags has not yet been specified. Given this, an analytic algorithm of form-finding for the earth-anchored suspension bridge with spatial cables is proposed in this paper. Through the geometric compatibility condition and mechanical equilibrium condition, the expressions for cable segment, the recurrence relationship between catenary parameters and control equations of spatial cable are established. Additionally, the nonlinear general reduced gradient method is introduced into fast and high-precision numerical analysis. Furthermore, the analytic expression of the lateral and vertical sags is deduced and discussed. This is very significant for the space design above the bridge deck and the optimization of the sag-to-span ratio in the preliminary design stage of the bridge. Finally, the proposed method is verified with the aid of two examples, one being an operational self-anchored suspension bridge (with spatial cables and a 260 m main span), and the other being an earth-anchored suspension bridge under design (with spatial cables and a 500 m main span). The necessity of an iterative calculation for hanger tensions on earth-anchored suspension bridges is confirmed. It is further concluded that the main cable and their connected hangers are in very close inclined planes.

Shape Scheme and Size Discrete Optimum Design of Plane Steel Trusses Using Improved Genetic Algorithm (개선된 유전자 알고리즘을 이용한 평면 철골트러스의 형상계획 및 단면 이산화 최적설계)

  • Kim, Soo-Won;Yuh, Baeg-Youh;Park, Choon-Wok;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.2 s.12
    • /
    • pp.89-97
    • /
    • 2004
  • The objective of this study is the development of a scheme and discrete optimum design algorithm, which is based on the genetic algorithm. The algorithm can perform both scheme and size optimum designs of plane trusses. The developed Scheme genetic algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of structures and the constraints are limits on loads and serviceability. The basic search method for the optimum design is the genetic algorithm. The algorithm is known to be very efficient for the discrete optimization. However, its application to the complicated structures has been limited because of the extreme time need for a number of structural analyses. This study solves the problem by introducing the size & scheme genetic algorithm operators into the genetic algorithm. The genetic process virtually takes no time. However, the evolutionary process requires a tremendous amount of time for a number of structural analyses. Therefore, the application of the genetic algorithm to the complicated structures is extremely difficult, if not impossible. The scheme genetic algorithm operators was introduced to overcome the problem and to complement the evolutionary process. It is very efficient in the approximate analyses and scheme and size optimization of plane trusses structures and considerably reduces structural analysis time. Scheme and size discrete optimum combined into the genetic algorithm is what makes the practical discrete optimum design of plane fusses structures possible. The efficiency and validity of the developed discrete optimum design algorithm was verified by applying the algorithm to various optimum design examples: plane pratt, howe and warren truss.

  • PDF

Study on Filler Effects of High Temperature Glass Sealant (고온용 유리 봉합재의 filler 첨가효과)

  • 손용배;김상우;김민호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.1
    • /
    • pp.51-58
    • /
    • 1999
  • The effects of glass composition on the wettability and reactivity with $ZrO_2$substrate was evaluated and fabrication variables and glass compositions was investigated. Various glass compositions was investigated. Alkaline earth silicate glass show good wettability and lower viscosity and crystallization of glass could be prevented by $B_2O_3$.The sealant glass begin to wet on $ZrO_2$substrate below $900^{\circ}C$ and porosity occurred in various glass compositions, the crystallization and porosity in the glass could be prevented by the addition of flux into glass composition. But flowability and reactivity of glass with $ZrO_2$substrate was enhanced. Processing variables should be optimized to reduce the porosity by enhancing the sintering of glass powder. Many silicate glasses were investigated for the applications of high temperature sealants. Wetting and bonding of glass was good enough to seal together between $ZrO_2$and other ceramic components of SOFC. But porosity and reaction layer were occurred in the sealant glass. It will be possible to produce glass sealant without porosity and reaction layer at the interface by optimization of processing variable and modify the glass compositions. In present study, wettability of glass-filler composite was investigated. The porosity, shape of filler and interfacial reactions of sealant glass with fillers were examined.

  • PDF

Evaluation of the Flux According to Membrane Distillation Module Structure and Operating Conditions Using PVDF Hollow Fiber Membrane (PVDF 중공사 분리막을 이용한 MD 모듈 구조 및 운전 조건에 따른 플럭스 영향 평가)

  • Min, Ji Hee;Lee, Seul ki;Gil, Nam Seok;Park, Min Soo;Kim, Jin Ho
    • Membrane Journal
    • /
    • v.28 no.2
    • /
    • pp.83-89
    • /
    • 2018
  • Hydrophobic porous PVDF hollow fiber membranes for Membrane Distillation (MD) were fabricated by a combination of thermally induced phase separation (TIPS) and stretching. The purpose of this study is to investigate the shape and operating conditions of the module and the effect of piping size on parallel connection. In the optimization experiment of the vacuum membrane distillation module, the flux decreased as the packing density and length of the membrane in the module increased. When the module was connected vertically, it was confirmed that the nearest to the inlet of the vacuum port was the highest flux. In selecting the size of the header pipe of the module, it was confirmed that the maximum flux is shown when the inner diameter area of the hollow fiber membrane and the inner diameter area of the header pipe are the same. Also, it is necessary to find the optimal linear velocity because the higher the linear velocity in the module, the higher the flux, but the pressure acting on the module also increases proportionally.

A Study on Effective Methods of Polygon Modeling through Modeling Process-Related System (모델링 공정 연계 시스템을 통한 효율적 폴리곤 모델링 기법에 대한 탐구)

  • Kim, Sang-Don;Lee, Hyun-Seok
    • Cartoon and Animation Studies
    • /
    • s.37
    • /
    • pp.143-158
    • /
    • 2014
  • In the modeling processes of 3D computer animation, methods to build optimal work conditions to realize real forms for more efficient works have been advanced. Digital sculpting software, published in 1999, ZBrush has been positioned as an essential factor in character model work requiring of realistic descriptions through different manufacturing methods from previous modeling work processes and easy shape realization. Their functional areas are expanding. So, in this production case paper, as a method to product more optimized animation character models, the efficiency of production method linking digital sculpting software (Z-Brush) and animation production software (Maya) was deliberated and its consequences and implications are suggested. To this end, first the technical features of polygon modeling and Retopology were reviewed. Second, based on it, the efficiency of animation character modeling work processes through step linking ZBrush and Maya suggested in this paper was analyzed. Third, based on the features drawn before, in order to prove the hypothesis on modeling optimization method suggested in this paper, the production process of character Dumvee from a short animation film, 'Cula & Mina' was analyzed as an example. Through this study, it was found that technical approach easiness and high level of completion could be realized through two software linked work processes. This study is considered to be a reference for optimizing production process of related industries or modeling-related classes by deliberating different modeling process linked systems.

Experimental Study on Optimization of Absorber Configuration in Compression/Absorption Heat Pump with NH3/H2O Mixture (NH3/H2O 혼합냉매를 사용한 압축/흡수식 히트펌프 시스템의 흡수기 최적화에 관한 실험적 연구)

  • Kim, Ji-Young;Kim, Min-Sung;Baik, Young-Jin;Park, Seong-Ryong;Chang, Ki-Chang;Ra, Ho-Sang;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.229-235
    • /
    • 2011
  • This research aims todevelopa compression/absorption hybrid heat pump system using an $NH_3/H_2O$ as working fluid.The heatpump cycle is based on a combination of compression and absorption cycles. The cycle consists of two-stage compressors, absorbers, a desorber, a desuperheater, solution heat exchangers, a solution pump, a rectifier, and a liquid/vapor separator. The compression/absorption hybrid heat pump was designed to produce hot water above $90^{\circ}C$ using high-temperature glide during a two-phase heat transfer. Distinct characteristics of the nonlinear temperature profile should be considered to maximize the performance of the absorber. In this study, the performance of the absorber was investigated depending on the capacity, shape, and arrangementof the plate heat exchangers with regard tothe concentration and distribution at the inlet of the absorber.

Morphological and Photoluminescence Characteristics of Laterally Self-aligned InGaAs/GaAs Quantum-dot Structures (수평 자기정렬 InGaAs/GaAs 양자점의 형태 및 분광 특성 연구)

  • Kim J. O.;Choe J. W.;Lee S. J.;Noh S. K.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.81-88
    • /
    • 2006
  • Laterally self-aligned InGaAs/GaAs quantum-dots (QDs) have been fabricated by using a multilayer stacking technique. For the growth optimization, we vary the number of stacks and the growth temperature in the ranges of 1-15 periods and $500-540^{\circ}C$. respectively, Atomic force microscope (AFM) images and photoluminescence (PL) spectra reveal that the lateral alignment of QDs is enhanced in extended length by an increased stack period, but severely degrades into film-like wires above a critical growth temperature. The morphological and the photoluminescence characteristics of laterally self-aligned InGaAs QDs have been analyzed through mutual comparisons among four samples with different parameters. An anisotropic arrangement develops with increasing number of stacks, and high-temperature capping allows isolated QDs to be spontaneously organized into a one-dimensionally aligned chain-like shape over a few ${\mu}m$, Moreover, the migration time allowed by growth interruption plays an additional important role in the chain arrangement of QDs. The QD chains capped at high temperature exhibit blue shifts in the emission energy, which may be attributed to a slight outdiffusion of In from the InGaAs QDs.

Optimum Design of Cross Section Lateral Damper Oil Seals for High Speed Railway Vehicle (고속 철도 차량 횡댐퍼 오일 씰의 형상 단면 최적설계)

  • Hwang, Ji-Hwan;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.579-584
    • /
    • 2017
  • The damper oil seal of a high-speed railway vehicle is made from nitrile butadiene rubber (NBR) in order to prevent lubricant from leaking into the damper and to stop harmful contaminants from entering the external environment while in service. Oil leakage through the seal primarily occurs from fatigue failure of the damper. Cumulative damage of the seal occurs due to the contact force between the rod and the rubber during movement due to track irregularities and cants, among other factors. Thus, the design of the oil seal should minimize the maximum principal strain at weak points. In this study, the optimal cross section of the damper oil seal was found using the multi-island genetic algorithm method to improve the durability of the damper. The optimal shape of the oil seal was derived using process automation and design optimization software. Nonlinear material properties for finite element analysis (FEA) of the rubber were determined by Marlow's model. The nonlinear FEA confirmed that the maximum principal strain at the oil leakage point was decreased 24% between the initial design and the optimum design.

Wear Problem Improvement Manufacture Technology of Ignitor Tip Component Using 3D Printing Technology (발전소 점화자 팁 부품의 마모 문제 해결을 위한 3D 프린팅 기술을 이용한 부품 제조기술개발)

  • Lee, Hye-Jin;Yeon, Simo;Son, Yong;Lee, Nak-Kyu
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.35-40
    • /
    • 2016
  • Ignitor tip is a component of burner to start the burning process in power plant. This is used to ignite the coal to a constant operating state by fuel mixed with air and kerosene. This component is composed of three components so that air and kerosene are mixed in the proper ratio and injected uniformly. Because the parts with the designed shape are manufactured in the machining process, they have to be made of three parts. These parts are designed to have various functions in each part. The mixing part mixes the supplied air and kerosene through the six holes and sends it to the injecting part at the proper ratio. The inject part injects mixed fuel, which is led to have a constant rotational direction in the connecting part, to the burner. And the connecting plate that the mixed fuel could rotate and spray is assembled so that the flame can be injected uniformly. But this part causes problems that are worn by vibration and rotation because it is mechanically assembled between the mixing part and the inject part. In this study, 3D printing method is used to integrate a connecting plate and an inject part to solve this wear problem. The 3D printing method could make this integrated part because the process is carried out layer by layer using a metal powder material. The part manufactured by 3D printing process should perform the post process such as support removal and surface treatment. However, while performing the 3D printing process, the material properties of the metal powders are changed by the laser sintering process. This change in material properties makes the post process difficult. In consideration of these variables, we have studied the optimization of manufacturing process using 3D printing method.