DOI QR코드

DOI QR Code

Improvement and validation of aerosol models for natural deposition mechanism in reactor containment

  • Jishen Li (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Bin Zhang (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Pengcheng Gao (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Fan Miao (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Jianqiang Shan (School of Nuclear Science and Technology, Xi'an Jiaotong University)
  • Received : 2022.09.27
  • Accepted : 2023.04.10
  • Published : 2023.07.25

Abstract

Nuclear safety is the lifeline for the development and application of nuclear energy. In severe accidents of pressurized water reactor (PWR), aerosols, as the main carrier of fission products, are suspended in the containment vessel, posing a potential threat of radioactive contamination caused by leakage into the environment. The gas-phase aerosols suspended in the containment will settle onto the wall or sump water through the natural deposition mechanism, thereby reducing atmospheric radioactivity. Aiming at the low accuracy of the aerosol model in the ISAA code, this paper improves the natural deposition model of aerosol in the containment. The aerosol dynamic shape factor was introduced to correct the natural deposition rate of non-spherical aerosols. Moreover, the gravity, Brownian diffusion, thermophoresis and diffusiophoresis deposition models were improved. In addition, ABCOVE, AHMED and LACE experiments were selected to validate and evaluate the improved ISAA code. According to the calculation results, the improved model can more accurately simulate the peak aerosol mass and respond to the influence of the containment pressure and temperature on the natural deposition rate of aerosols. At the same time, it can significantly improve the calculation accuracy of the residual mass of aerosols in the containment. The performance of improved ISAA can meet the requirements for analyzing the natural deposition behavior of aerosol in containment of advanced PWRs in severe accident. In the future, further optimization will be made to address the problems found in the current aerosol model.

Keywords

References

  1. W. Schock, H. Bunz, R.E. Adams, et al., Large-scale experiments on aerosol behavior in Light water reactor containments, Nucl. Technol. 81:2 (2) (1988) 139-157.  https://doi.org/10.13182/NT88-A34089
  2. Y. Lee, Y.J. Cho, K. Lim, Coupling scheme of multicomponent sectional equations and Mason equations via transition rate matrix of hygroscopic growth applied to international standard problem No. 44, Ann. Nucl. Energy 127 (2019) 437-449. MAY.  https://doi.org/10.1016/j.anucene.2018.12.028
  3. C. Kaltenbach, E. Laurien, CFD Simulation of aerosol particle removal by water spray in the model containment Thai, J. Aerosol Sci. 120 (2018) 62-81.  https://doi.org/10.1016/j.jaerosci.2018.03.005
  4. L.E. Herranz, M. Garcia, S. Morandi, Benchmarking LWR codes capability to model radionuclide deposition within SFR containments: an analysis of the Na ABCOVE tests, Nucl. Eng. Des. 265 (2013) 772-784, dec.  https://doi.org/10.1016/j.nucengdes.2013.05.030
  5. W. Hu, C. Zhao, J. Bi, et al., ASTEC simulation of fission product source term ruthenium in coolant in severe accident, Ann. Nucl. Energy 133 (2019) 658-664. Nov.  https://doi.org/10.1016/j.anucene.2019.06.063
  6. B.J. Merrill, D.L. Hagrman, MELCOR Aerosol Transport Module Modification for NSSR-1, Office of Scientific & Technical Information Technical Reports, 1996. 
  7. S. Paci, T. Pinna, M.T. Porfiri, Analysis of the ICE Experimental Tests Using the ECART Code, Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), 2017. 
  8. R. Passalacqua, D. Tarabelli, C. Renault, Light water reactor aerosol containment experiment LA4 simulated by JERICHO and AEROSOLS-B2 codes, Nucl. Technol. 116 (3) (1996) 283-292.  https://doi.org/10.13182/NT96-A35284
  9. H.S. Kang, B.W. Rhee, D.H. Kim, Development of a fission product transport module predicting the behavior of radiological materials during severe accidents in a nuclear power plant, J. Radiat. Protect. Res. 41 (3) (2016) 237-244.  https://doi.org/10.14407/jrpr.2016.41.3.237
  10. P. Gao, B. Zhang, J. Li, et al., Development of mechanistic cladding rupture model for integrated severe accident code ISAA. Part I: module verification and application in CAP1400, Ann. Nucl. Energy 158 (2-3) (2021), 108305. 
  11. P. Gao, B. Zhang, J. Li, et al., Development of mechanistic cladding rupture model for severe accident analysis and application in PHEBUS FPT3 experiment, Nucl. Eng. Technol. (2) (2021). 
  12. F. Gelbard, MAEROS User Manual, 1982. 
  13. W.C. Hinds, Aerosol Technology, John Wiley & Sons, New York, 1982. 
  14. D.A. Powers, K.E. Washington, J.L. Sprung, et al., A Simplified Model of Aerosol Removal by Natural Processes in Reactor Containments, nuclear power reactors & associated plants, 1996. 
  15. D.A. Powers, A Simplified Model of Decontamination by BWR Steam Suppression Pools, Office of entific & Technical Information Technical Reports, 1997. 
  16. W.F. Phillips, Motion of aerosol particles in a temperature gradient, Phys. Fluids 18 (2) (1975) 144. 
  17. F.O. Goodman, H.Y. Wachman, Formula for thermal accommodation coefficients, J. Chem. Phys. 46 (6) (1967) 2376-2386.  https://doi.org/10.1063/1.1841046
  18. D.J. Rader, Momentum slip correction factor for small particles in nine common gases, J. Aerosol Sci. 21 (2) (1990) 161-168.  https://doi.org/10.1016/0021-8502(90)90001-E
  19. J.F. Vandevate, Investigations into the Dynamics of Aerosols in Enclosures as Used for Air Pollution Studies, 1980. 
  20. W. Vechgama, K. Silva, S. Rassame, Validation of modified ART mod 2 code through comparison with aerosol deposition of cesium compound in phebus FPT 3 containment vessel, Sci. Technol. Nuclear Installations. (2019) 1-16. 
  21. L. Waldmann, K. Schmitt, Thermophoresis and Diffusiophoresis of Aerosols, 1966. 
  22. R.K. Hilliard, J.D. Mccormack, A.K. Postma, Results and Code Predictions for ABCOVE Aerosol Code Validation - Test AB5, Hanford Engineering Development Laboratory, 1983. 
  23. J.M. Makynen, J.K. Jokiniemi, AHMED Code Comparison Exercise, VTT Energy, Finland, October 1995. 
  24. J.M. Makynen, J.K. Jokiniemi, P.P. Ahonen, et al., AHMED experiments on hygroscopic and inert aerosol behaviour in LWR containment conditions: experimental results, Nucl. Eng. Des. 178 (1) (1997) 45-59.  https://doi.org/10.1016/S0029-5493(97)00174-X
  25. L.D. Muhlestein, R.K. Hilliard, G.R. Bloom, et al., LWR Aerosol Containment Experiments (LACE) Program and Initial Test Results, 1983. 
  26. R K Hl liard, L D Muhle stein, T.J. Al biol, Final Report of Experimental Results of LACE Test LA2-Failure to Isolate Containment, LACE TR-007, Westinghouse Hanford Company, June 1987. 
  27. J.D.R.H. McCormack, J.M. Salgado, Final Report of Experimental Results of LACE Test LA-4, LACE TR-025, Westinghouse Hanford Co., October 1987. 
  28. L.N. Kmetyk, MELCOR 1.8.1 Assessment of LACE Aerosol Experiment LA-4, September 1991. SAND91-1532. 
  29. I. Kljenak, B. Mavko, Simulation Of Lace La4 Experiment On Aerosol Behavior In A Npp Containment At Severe Accident Conditions With The Astec Cpa Code, The Proceedings of the International Conference on Nuclear Engineering (ICONE), 2007, 2007.15:ICONE1510-_ICONE1510. 
  30. Y.M. Song, H.D. Kim, Y.M. Park, et al., Source term model accuracy evaluation in MELCOR code using international standard problem No.44, J. Nucl. Sci. Technol. 41 (sup4) (2004) 439-442. 
  31. I. Kljenak, A New Approach for Simulation of Aerosol Behaviour in a Saturated Atmosphere with the Contain Code, 2003. Slovenia. 
  32. I. Kljenak, B. Mavko, Simulation of KAEVER Experiments on Aerosol Behavior in a Nuclear Power Plant Containment at Accident Conditions with the ASTEC Code, 2017. Slovenia. 
  33. B.J. Mason, The Physics of Clouds, Clarendon, Oxford, UK, 1971.