• Title/Summary/Keyword: shallow structures

Search Result 333, Processing Time 0.03 seconds

A study on the bifurcation buckling for shallow sinusoidal Arches (얕은 정현형(正弦型) 아치의 분기좌굴에 관한 연구)

  • 김승덕;권택진;박지윤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.457-464
    • /
    • 1998
  • The equilibrium path of shallow sinusoidal arches supported by hinges at both ends is investigated. The displacement increment method is used to get the solution of the nonlinear differential equations for these structures and to plot the equilibrium paths by the results. Using the equilibrium paths, the relations between the position of buckling point and buckling type for the case of sinusoidal distributed loads are inferred. From the result that the buckling type changes according to the normalized rise of arch, it is also shown that the arch rise is the governing factor to stability regions

  • PDF

A Study on the Dynamic Instability of Shallow Sinusoidal Arches (얕은 정현형(正弦型) 아치의 동적불안정에 관한 연구)

  • 김승덕;박지윤;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.233-242
    • /
    • 1998
  • Many papers which deal with the dynamic instability for shell-like structures under the step load have been published, but there are few papers which treat the essential phenomenon of the dynamic buckling using the phase plane for investigating occurrence of chaos. Dynamic buckling process in the phase plane is a very important thing for understanding why unstable phenomena are sensitively originated in nonlinear dynamics by various initial conditions. In this study, the direct and the indirect snap-buckling of shallow arches considering geometrical nonlinearity are investigated numerically and compared with the static critical load.

  • PDF

The Instability Behavior of Shallow Sinusoidal Arches(1) : Classification of Static Buckling According to Shape Characteristics (얕은 정현형 아치의 불안정 거동에 관한 연구(1) : 형상특성에 따른 정적좌굴의 분류)

  • 김승덕;박지윤;권택진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.407-415
    • /
    • 1999
  • There are two kinds of instability phenomena for shell-type structures which are snap-through and bifurcation buckling. These are very sensitive according to the shape characteristics including rise-span ratio and especially shape initial imperfection. In this study, the equilibrium path of shallow sinusoidal arches supported by hinges at both ends is investigated to grasp the instability behavior of shell-type structures with initial imperfection. The Galerkin method is used to get the nonlinear discretized equation of governing differential equation considering geometric nonlinearity of arches and the perturbation method is also used to transform the nonlinear equation to incremental form.

  • PDF

Implementation of Electrochemical Methods for Metrology and Analysis of Nano Electronic Structures of Deep Trench DRAM

  • Zeru, Tadios Tesfu;Schroth, Stephan;Kuecher, Peter
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.219-229
    • /
    • 2012
  • In the course of feasibility study the necessity of implementing electrochemical methods as an inline metrology technique to characterize semiconductor nano structures for a Deep Trench Dynamic Random Access Memory (DT-DRAM) (e.g. ultra shallow junctions USJ) was discussed. Hereby, the state of the art semiconductor technology on the advantages and disadvantages of the most recently used analytical techniques for characterization of nano electronic devices are mentioned. Various electrochemical methods, their measure relationship and correlations to physical quantities are explained. The most important issue of this paper is to prove the novel usefulness of the electrochemical micro cell in the semiconductor industry.

Dynamic Buckling Characteristics of Arch Structures Considering Geometric Nonlinearity (기하학적 비선형을 고려한 정현형 아치 구조물의 동적 좌굴 특성)

  • 윤태영;김승덕
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.492-497
    • /
    • 2003
  • The dynamic instability for snapping phenomena has been studied by many researches. There is few paper which deal with the dynamic buckling under the load with periodic characteristics, and the behavior under periodic excitation is expected the different behavior against STEP excitation. We investigate the fundamental mechanisms of the dynamic instability when the sinusoidal shaped arch structures subjected to sinusoidal distributed excitation with pin-ends. In this study, the dynamic direct snapping of shallow arches is investigated under not only STEP load excitation but also sinusoidal harmonic excitations, applied in the up-and-down direction. The dynamic nonlinear responses are obtained by the numerical integration of the geometrically nonlinear equations of motion, and examined by the Fourier spectral analysis in order to get the frequency-dependent characteristics of the dynamic instability for various load levels.

  • PDF

Analysis of LRFD Resistance Factor for Shallow Foundation on Weathered Soil Ground (풍화토지반 얕은기초에 대한 LRFD 저항계수 분석)

  • Kim, Donggun;Kim, Huntae;Suh, Jeeweon;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.6
    • /
    • pp.5-11
    • /
    • 2015
  • Recently the necessity of developing the Load and Resistance Factor Design (LRFD) for shallow foundation has been raised to implement to the domestic design codes related to geotechnical engineering since the limit state design is requested as international technical standard for the foundation of structures. In this study, applicability of LRFD for shallow foundation on weathered soils was investigated and resistance factor for this case was proposed. The quantitative analyses on the uncertainty and resistance bias for shallow foundation on weathered soil ground were performed by collecting the statistical data about domestic case studies for design and construction of shallow foundation. Reliability analyses for shallow foundation were first performed using FDA (First-order Design value Approach) method. Resistance factors were calibrated using the load factors obtained from the specifications of shallow foundations on weathered soil ground. The influence of the load factors developed in this study on the resistance factors were discussed by comparing with the resistance factor obtained from using AASHTO load factors.

The Characteristics Analysis of Novel Moat Structures in Shallow Trench Isolation for VLSI (초고집적용 새로운 회자 구조의 얕은 트랜치 격리의 특성 분석)

  • Lee, Yong-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2509-2515
    • /
    • 2014
  • In this paper, the conventional vertical structure for VLSI circuits CMOS intend to improve the stress effects of active region and built-in threshold voltage. For these improvement, the proposed structure is shallow trench isolation of moat shape. We want to analysis the electron concentration distribution, gate bias vs energy band, thermal stress and dielectric enhanced field of thermal damage between vertical structure and proposed moat shape. Physically based models are the ambient and stress bias conditions of TCAD tool. As an analysis results, shallow trench structure were intended to be electric functions of passive as device dimensions shrink, the electrical characteristics influence of proposed STI structures on the transistor applications become stronger the potential difference electric field and saturation threshold voltage, are decreased the stress effects of active region. The fabricated device of based on analysis results data were the almost same characteristics of simulation results data.

A Study of Performance Characteristics for Active Sonar in Korean Shallow Seawater Temperature Structures (한국 천해 수온구조에서의 능동소나 성능 특성 연구)

  • Kim, Won-Ki;Bae, Ho Seuk;Son, Su-Uk;Hahn, Jooyeong;Park, Joung-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.482-491
    • /
    • 2021
  • It is obvious that understanding the effects of shallow water environment of Korea is very important to guarantee the optimal performance of active sonar such as monostatic and bistatic sonar. For this reason, in this paper, we analyzed the detection performance characteristics for various depth deployments of sonar in summer, winter and water temperature inversion environments, which environments are frequently observed in shallow water of Korea such as the Yellow sea. To analyze only effects of water temperature structures on target detection performance, we applied range independent conditions for bottom, sea surface and water temperature characteristics. To understand the characteristics of detection performance, we conducted transmission loss and signal excess modeling. From the results, we were able to confirm the characteristics of detection performance of active sonar. In addition, we verified that operation depth of transmitter and receiver affects the detection performance. Especially in the water temperature inversion environment, it was confirmed that the shadow zone could be minimized and the detection range could be increased through bistatic operation.

Elasticity solution of multi-layered shallow cylindrical panels subjected to dynamic loading

  • Shakeri, M.;Eslami, M.R.;Alibiglu, A.
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.195-208
    • /
    • 2002
  • Elasticity solutions to the boundary-value problems of dynamic response under transverse asymmetric load of cross-ply shallow cylindrical panels are presented. The shell panel is simply supported along all four sides and has finite length. The highly coupled partial differential equations are reduced to ordinary differential equations with constant coefficients by means of trigonometric function expansion in the circumferential and axial directions. The resulting ordinary differential equations are solved by Galerkin finite element method. Numerical examples are presented for two (0/90 deg.) and three (0/90/0 deg.) laminations under dynamic loading.

Constraint Loss Assessment of SA508 PCVN Specimen according to Crack depth (SA508 PCVN 시편의 균열깊이에 따른 구속력 손실 평가)

  • Park, Sang-Yun;Lee, Ho-Jin;Lee, Bong-Sang
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.161-166
    • /
    • 2008
  • In general structures, cleavage fracture may develop under the low constraint condition of larger scale yielding with a shallow surface crack. However, standard procedures for fracture toughness testing require very severe restrictions of specimen geometry. So the standard fracture toughness data makes the integrity assessment irrationally conservative. In this paper, cleavage fracture toughness tests have been made on side-grooved PCVN (precracked charpy V-notch) type specimens (10 by 10 by 55 mm) with varying crack depth, The constraint effects on the crack depth ratios are quantitatively evaluated by scaling model and Weibull stress method using 3-D finite clement method, After correction of constraint loss due to shallow crack depths, the statistical size effect are also corrected according to the standard ASTM E 1921 procedure, The results snowed a good agreement in the geometry correction regardless of the crack size, while some over-corrections were observed in the corrected values of $T_0$.

  • PDF