• Title/Summary/Keyword: shadow segmentation

Search Result 45, Processing Time 0.031 seconds

A License-Plate Image Binarization Algorithm Based on Least Squares Method for License-Plate Recognition of Automobile Black-Box Image (블랙박스 영상용 자동차 번호판 인식을 위한 최소 자승법 기반의 번호판 영상 이진화 알고리즘)

  • Kim, Jin-young;Lim, Jongtae;Heo, Seo Weon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.747-753
    • /
    • 2018
  • In the license-plate recognition systems for automobile black Image, the license-plate image frequently has a shadow due to outdoor environments which are frequently changing. Such a shadow makes unpredictable errors in the segmentation process of individual characters and numbers of the license plate image, and reduces the overall recognition rate. In this paper, to improve the recognition rate in these circumstance, a license-plate image binarization algorithm is proposed removing the shadow effectively. The propose algorithm splits the license-plate image into the regions with the shadow and without. To find out the boundary of two regions, the algorithm estimates the curve for shadow boundary using the least-squares method. The simulation is performed for the license-plate image having its shadow, and the results show much higher recognition rate than the previous algorithm.

Selective Histogram Matching of Multi-temporal High Resolution Satellite Images Considering Shadow Effects in Urban Area (도심지역의 그림자 영향을 고려한 다시기 고해상도 위성영상의 선택적 히스토그램 매칭)

  • Yeom, Jun-Ho;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.47-54
    • /
    • 2012
  • Additional high resolution satellite images, other period or site, are essential for efficient city modeling and analysis. However, the same ground objects have a radiometric inconsistency in different satellite images and it debase the quality of image processing and analysis. Moreover, in an urban area, buildings, trees, bridges, and other artificial objects cause shadow effects, which lower the performance of relative radiometric normalization. Therefore, in this study, we exclude shadow areas and suggest the selective histogram matching methods for image based application without supplementary digital elevation model or geometric informations of sun and sensor. We extract the shadow objects first using adjacency informations with the building edge buffer and spatial and spectral attributes derived from the image segmentation. And, Outlier objects like a asphalt roads are removed. Finally, selective histogram matching is performed from the shadow masked multi-temporal Quickbird-2 images.

The New Area Subdivision and Shadow Generation Algorithms for Colored Paper Mosaic Rendering (새로운 색종이 모자이크 모양 결정과 입체감 생성 알고리즘에 관한 연구)

  • Seo, SangHyun;Kang, DaeWook;Park, YoungSub;Yoon, Kyunghyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.7 no.2
    • /
    • pp.11-19
    • /
    • 2001
  • This paper proposes a colored paper mosaic rendering technique based on image segmentation that can automatically generate torn and tagged colored paper mosaic effect. and 3D effect that come about in human-made mosaic work can be represented by generating shadow using difference of paper thickness. Previous method did not produce satisfactory results due to the ineffectiveness of having to use pieces of the same size. The proposed two methods for determination of paper shape and location that are based on segmentation can subdivide image area by considering characteristics of image. The first method is to generate Voronoi polygon after subdividing the segmented image again using quad tree. And the second method is to apply the Voronoi diagram on each segmentation layer. Through these methods, the characteristic of the image is expressed in more detail than previous colored paper mosaic rendering method and these methods enable to produce image that is closer to human-made mosaic work.

  • PDF

High Accuracy Vision-Based Positioning Method at an Intersection

  • Manh, Cuong Nguyen;Lee, Jaesung
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.114-124
    • /
    • 2018
  • This paper illustrates a vision-based vehicle positioning method at an intersection to support the C-ITS. It removes the minor shadow that causes the merging problem by simply eliminating the fractional parts of a quotient image. In order to separate the occlusion, it firstly performs the distance transform to analyze the contents of the single foreground object to find seeds, each of which represents one vehicle. Then, it applies the watershed to find the natural border of two cars. In addition, a general vehicle model and the corresponding space estimation method are proposed. For performance evaluation, the corresponding ground truth data are read and compared with the vision-based detected data. In addition, two criteria, IOU and DEER, are defined to measure the accuracy of the extracted data. The evaluation result shows that the average value of IOU is 0.65 with the hit ratio of 97%. It also shows that the average value of DEER is 0.0467, which means the positioning error is 32.7 centimeters.

Analysis of Shadow Effect on High Resolution Satellite Image Matching in Urban Area (도심지역의 고해상도 위성영상 정합에 대한 그림자 영향 분석)

  • Yeom, Jun Ho;Han, You Kyung;Kim, Yong Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Multi-temporal high resolution satellite images are essential data for efficient city analysis and monitoring. Yet even when acquired from the same location, identical sensors as well as different sensors, these multi-temporal images have a geometric inconsistency. Matching points between images, therefore, must be extracted to match the images. With images of an urban area, however, it is difficult to extract matching points accurately because buildings, trees, bridges, and other artificial objects cause shadows over a wide area, which have different intensities and directions in multi-temporal images. In this study, we analyze a shadow effect on image matching of high resolution satellite images in urban area using Scale-Invariant Feature Transform(SIFT), the representative matching points extraction method, and automatic shadow extraction method. The shadow segments are extracted using spatial and spectral attributes derived from the image segmentation. Also, we consider information of shadow adjacency with the building edge buffer. SIFT matching points extracted from shadow segments are eliminated from matching point pairs and then image matching is performed. Finally, we evaluate the quality of matching points and image matching results, visually and quantitatively, for the analysis of shadow effect on image matching of high resolution satellite image.

An Efficient Numeric Character Segmentation of Metering Devices for Remote Automatic Meter Reading (원격 자동 검침을 위한 효과적인 계량기 숫자 분할)

  • Toan, Vo Van;Chung, Sun-Tae;Cho, Seong-Won
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.737-747
    • /
    • 2012
  • Recently, in order to support automatic meter reading for conventional metering devices, an image processing-based approach of recognizing the number meter data in the captured meter images has attracted many researchers' interests. Numerical character segmentation is a very critical process for successful recognition. In this paper, we propose an efficient numeric character segmentation method which can segment numeric characters well for any metering device types under diverse illumination environments. The proposed method consists of two consecutive stages; detection of number area containing all numbers as a tight ROI(Region of Interest) and segmentation of numerical characters in the ROI. Detection of tight ROI is achieved in two steps: extraction of rough ROI by utilizing horizontal line segments after illumination enhancement preprocessing, and making the rough ROI more tight through clipping utilizing vertical and horizontal projection about binarized ROI. Numerical character segmentation in the detected ROI is stably achieved in two processes of 'vertical segmentation of each number region' and 'number segmentation in the each vertical segmented number region'. Through the experiments about a homegrown meter image database containing various meter type images of low contrast, low intensity, shadow, and saturation, it is shown that the proposed numeric character segmentation method performs effectively well for any metering device types under diverse illumination environments.

Segmentation of Polygons with Different Colors and its Application to the Development of Vision-based Tangram Puzzle Game (다른 색으로 구성된 다각형들의 분할과 이를 이용한 영상 인식 기반 칠교 퍼즐 놀이 개발)

  • Lee, Jihye;Yi, Kang;Kim, Kyungmi
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.1890-1900
    • /
    • 2017
  • Tangram game consists of seven pieces of polygons such as triangle, square, and parallelogram. Typical methods of image processing for object recognition may suffer from the existence of side thickness and shadow of the puzzle pieces that are dependent on the pose of 3D-shaped puzzle pieces and the direction of light sources. In this paper, we propose an image processing method that recognizes simple convex polygon-shaped objects irrespective of thickness and pose of puzzle objects. Our key algorithm to remove the thick side of piece of puzzle objects is based on morphological operations followed by logical operations with edge image and background image. By using the proposed object recognition method, we are able to implement a stable tangram game applications designed for tablet computers with front camera. As the experimental results, recognition rate is about 86 percent and recognition time is about 1ms on average. It shows the proposed algorithm is fast and accurate to recognize tangram blocks.

Image Segmentation Based on Fusion of Range and Intensity Images (거리영상과 밝기영상의 fusion을 이용한 영상분할)

  • Chang, In-Su;Park, Rae-Hong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.9
    • /
    • pp.95-103
    • /
    • 1998
  • This paper proposes an image segmentation algorithm based on fusion of range and intensity images. Based on Bayesian theory, a priori knowledge is encoded by the Markov random field (MRF). A maximum a posteriori (MAP) estimator is constructed using the features extracted from range and intensity images. Objects are approximated by local planar surfaces in range images, and the parametric space is constructed with the surface parameters estimated pixelwise. In intensity images the ${\alpha}$-trimmed variance constructs the intensity feature. An image is segmented by optimizing the MAP estimator that is constructed using a likelihood function based on edge information. Computer simulation results shw that the proposed fusion algorithm effectively segments the images independentl of shadow, noise, and light-blurring.

  • PDF

Real-Time Vehicle Detector with Dynamic Segmentation and Rule-based Tracking Reasoning for Complex Traffic Conditions

  • Wu, Bing-Fei;Juang, Jhy-Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.12
    • /
    • pp.2355-2373
    • /
    • 2011
  • Vision-based vehicle detector systems are becoming increasingly important in ITS applications. Real-time operation, robustness, precision, accurate estimation of traffic parameters, and ease of setup are important features to be considered in developing such systems. Further, accurate vehicle detection is difficult in varied complex traffic environments. These environments include changes in weather as well as challenging traffic conditions, such as shadow effects and jams. To meet real-time requirements, the proposed system first applies a color background to extract moving objects, which are then tracked by considering their relative distances and directions. To achieve robustness and precision, the color background is regularly updated by the proposed algorithm to overcome luminance variations. This paper also proposes a scheme of feedback compensation to resolve background convergence errors, which occur when vehicles temporarily park on the roadside while the background image is being converged. Next, vehicle occlusion is resolved using the proposed prior split approach and through reasoning for rule-based tracking. This approach can automatically detect straight lanes. Following this step, trajectories are applied to derive traffic parameters; finally, to facilitate easy setup, we propose a means to automate the setting of the system parameters. Experimental results show that the system can operate well under various complex traffic conditions in real time.

Moving Object Segmentation using Space-oriented Object Boundary Linking and Background Registration (공간기반 객체 외곽선 연결과 배경 저장을 사용한 움직이는 객체 분할)

  • Lee Ho Suk
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.2
    • /
    • pp.128-139
    • /
    • 2005
  • Moving object boundary is very important for moving object segmentation. But the moving object boundary shows broken boundary We invent a novel space-oriented boundary linking algorithm to link the broken boundary The boundary linking algorithm forms a quadrant around the terminating pixel in the broken boundary and searches forward other terminating pixel to link within a radius. The boundary linking algorithm guarantees shortest distance linking. We also register the background from image sequence. We construct two object masks, one from the result of boundary linking and the other from the registered background, and use these two complementary object masks together for moving object segmentation. We also suppress the moving cast shadow using Roberts gradient operator. The major advantages of the proposed algorithms are more accurate moving object segmentation and the segmentation of the object which has holes in its region using these two object masks. We experiment the algorithms using the standard MPEG-4 test sequences and real video sequence. The proposed algorithms are very efficient and can process QCIF image more than 48 fps and CIF image more than 19 fps using a 2.0GHz Pentium-4 computer.