• Title/Summary/Keyword: sewage treatment sludge

Search Result 400, Processing Time 0.026 seconds

Dissolved organic matter characteristics and bacteriological changes during phosphorus removal using ladle furnace slag

  • Noh, Jin H.;Lee, Sang-Hyup;Choi, Jae-Woo;Maeng, Sung Kyu
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.181-188
    • /
    • 2018
  • A sidestream contains the filtrate or concentrate from the belt filter press, filter backwash and supernatant from sludge digesters. The sidestream flow, which heads back into the sewage treatment train, is about 1-3% less than the influent flow. However, the sidestream can increase the nutrient load since it contains high concentrations of phosphorus and nitrogen. In this study, the removal of PO4-P with organic matter characteristics and bacteriological changes during the sidestream treatment via ladle furnace (LF) slag was investigated. The sidestream used in this study consisted of 11-14% PO4-P and 3.2-3.6% soluble chemical oxygen demand in influent loading rates. LF slag, which had a relatively high $Ca^{2+}$ release compared to other slags, was used to remove $PO_4-P$ from the sidestream. The phosphate removal rates increased as the slag particle size decreased 19.1% (2.0-4.0 mm, 25.2% (1.0-2.0 mm) and 79.9% (0.5-1.0 mm). The removal rates of dissolved organic carbon, soluble chemical oxygen demand, color and aromatic organic matter ($UV_{254}$) were 17.6, 41.7, 90.2 and 77.3%, respectively. Fluorescence excitation-emission matrices and liquid chromatography-organic carbon detection demonstrated that the sidestream treatment via LF slag was effective in the removal of biopolymers. However, the removal of dissolved organic matter was not significant during the treatment. The intact bacterial biomass decreased from $1.64{\times}10^8cells/mL$ to $1.05{\times}10^8cells/mL$. The use of LF slag was effective for the removal of phosphate and the removal efficiency of phosphate was greater than 80% for up to 100 bed volumes.

Bioaccumulation of Chromium and Manganese in the Earthworm Eisenia andrei (Annelida; Oligochaeta) in Relation to the Supply of Organic Sludges (유기성 슬러지 급이에 따른 크롬과 망간의 줄지렁이 (Eisenia andrei (Annelida; Oligochaeta)) 체내 생물축적)

  • Bae, Yoon-Hwan;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.101-108
    • /
    • 2016
  • Concentrations of Chromium(Cr) and Manganese(Mn) in several kinds of dewatered organic sewage sludges generated from wastewater treatment plants of Pocheon City, Gyeongii Province were examined. In addition, bioaccumulations of Cr and Mn in the body of earthworm Eisenia fetida were also investigated by changing of feed sludge amounts. Cr and Mn concentrations in sludges were in the range of 0.0~0.3 mg/kg and 3.6~17.6 mg/kg, respectively, which would not cause acute toxicities to earthworm population. Cr was bioaccumulated in the earthworm body but bioaccumulation was not proportional to the amount of sludges supplied. The degree of bioaccumulation of Cr decreased in later phase as the supplied amounts of sludges increased. Meanwhile, there were rare bioaccumulation with regard to Mn. In this study, the value ranges of bioaccumulation factor (BAF) for Mn were 0.00~0.12 when 60g of sludges was supplied. In the case of Cr, the value of BAF was 19.33 when 60g of human manure sludge was provided.

Removal of pentachlorophenol by pentachlorophenol resistant strains isolated from activated sludge (활성오니에서 분리한 pentachlorophenol 내성균주의 pentachlorophenol 제거에 관한 연구)

  • Park, Yun-Hee;Cho, Sung-Eun;Lee, Woo-Sang;Jo, Do-Hyun
    • Applied Biological Chemistry
    • /
    • v.35 no.4
    • /
    • pp.242-247
    • /
    • 1992
  • Twenty strains of pentachlorophnol (PCP) resistant bacteria were isolated from activated sludge of the sewage treatment plant of Jung Lang Chun, Seoul. The predominant strains were Bacillus spp. including B. sphaericus and E. schlegelii. The other strains were identified as Corynebacterium spp., Staphylococcus aureus, Arthrobacter spp. and Aeromonas spp. The resistant strains could be grouped into two categories; PCP-degrading and PCP-adsorbing/absorbing ones. PCP-degrading strains degraded $75{\sim}90%$ of PCP in the medium containing 100 ppm PCP during the first 24 hours of growth. At the initial period the PCP-adsorbing/absorbing strains removed PCP from the medium but started to release PCP after 24 or 72 hours of growth. PCP degradation products from the culture broth of PCP-degrading strains were identified by comparing their $R_f$ values with those of the reference compounds. 2-chlorophenol and 2.4-dichlorophenol were presumed to be the intermediate products of PCP degradation.

  • PDF

The Study of Solid Waste Compost Development for Reclaiming Damage Soil in Forest (산림훼손토양 복원을 위한 부숙토 개발 연구)

  • Na, Seung-Ju;Chang, Ki-Woon;Yang, Hui-Young;Jeon, Han-Ki;Lee, Jong-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.2
    • /
    • pp.107-120
    • /
    • 2005
  • To study the development of solid waste compost to use sewage sludge and paper mill sludge for reclaiming damage soil in forest, the changes of temperature, moisture, chemical properties, heavy metals and harmful compound during the aerobic decomposition were investigated, and the compost decomposition of final products investigated the round paper chromatography method and G.I(Germination index) value. The results were summarized as follows. Temperature was changed a little during early 5days because of air temperature too low. That was rapidly increased to over $50^{\circ}C$ at 4days after first turning and then decreased gradually fallen to $40{\sim}50^{\circ}C$ at 15days after aerobic decomposition in A and C treatments. The second turning was conducted at 18 days after aerobic decomposition, and then the temperature was little changed. At the compare first with terminal product, The moisture content was decreased all treatments but the change was little in A and B treatments. pH was decreased to below 1 in all treatments. EC was increased to below 5dS/m. The content of total carbon, C/N ratio, $NH_4{^+}-N$ were decreased with 4~7%, below 8 and below 500mg/kg in all treatments, respectively. The content of total nitrogen, $NO_3{^-}-N$, CEC were increased with below 0.5%, below 173mg/kg and over $30cmol^+/kg$ in all treatments, respectively. The content of heavy metals and harmful compound were similar during aerobic decomposition and suited to standard of 가 grade in all treatments. The result of round paper chromatography method and G.I. value, The C treatment concluded well aerobic decomposition. Especially, the G.I. value in C treatment was 64.1 and 66.2 at cabbage and grass, respectively.

  • PDF

The Study on the Odor Removal of Digested sludge using BIO-CLOD (BIO-CLOD를 이용한 소화슬러지의 악취저감에 대한 연구)

  • Sung, Il-Wha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8665-8672
    • /
    • 2015
  • In this study, to investigate the feasibility of malodorous substance and organic matter removal by digest sludge in sewage treatment plants, ammonia, methyl mercaptan(MMC), and hydrogen sulfide($H_2S$) in a reactor submerged with BIO-CLOD(BIO-CLOD) and a reactor not submerged with BIO-CLOD(Non BIO-CLOD) were measured at 24 hours, 48 hours, and 72 hours after the submergence of BIO-CLOD. Whereas the reactor in which BIO-CLOD was submerged showed an ammonia removal rate of 48% and high $H_2S$ and MMC removal rates exceeding 98% in 24 hours, the reactor in which BIO-CLOD was not submerged showed an ammonia removal rate of 45%, an $H_2S$ removal rate of 71%, and an MMC removal rate of 84% in 24 hours indicating the possibility of removal of malodor using BIO-CLOD. A nitrification was shown in which ammonia concentrations decreased over time while nitrate nitrogen concentrations increased and sulfur based malodor components were oxidation decomposed indicating that BIO-CLOD had effects to increase sulfate concentrations in the solution and that sulfate concentration increases and atmospheric $H_2S$ removal rates were correlated with each other. With regard to decreases in organic matter in reactor effluents, BIO-CLOD did not affect in a short period of time and when reactors were operated with HRT 12 hours and HRT 24 hours, HRT 12 hours was considered desirable in terms of economy.

Characteristics of Thermophilic Methane Fermentation Using the Organic Wastes (유기성 폐기물을 이용한 고온 메탄 발효의 특성)

  • Kim, Nam-Cheon;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.29-37
    • /
    • 2008
  • In this work, it was investigated that various aspects of process, application situation, merits and short-coming results of the thermophilic methane fermentation with highly concentrated organic waste substances such as sewage sludges, food wastes and excretions. The merits of this methane fermentation were that it had a very fast reaction rate and was possible to proceed in high loads. It was also high in mortality for pathogenic microorganism and the digested sludge was more hygienic. However, the short-comings were that more energy was required for heating in the fermentation facility, no surplus energy could be gained from low concentration of organic waste, the fermentation treatment dropped level of water quality, thus burdens discharging process of water. Especially, the high concentration of methane fermentation could possibly lack nutritious salt and could face the disturbance by ${NH_4}^+-N$, a proper alternative was required. In general, thermophilic methane fermentation was considered as a better mean in disposing of cow excretion and food waste which were highly concentrated organic wastes. On the other hand, under the condition where the concentration of waste material was low and the high concentrate waste material became higher than 3,000 mg/L in ${NH_4}^+-N$, thermophilic methane fermentation resulted less desirable outcome.

  • PDF

Application of Statistical Analysis for Optimization of Organic Wastes Acidogenesis (유기성 폐기물의 산발효 최적화를 위한 통계학적 분석 방안의 적용)

  • Jeong, Emma;Kim, Hyun-Woo;Nam, Joo-Youn;Oh, Sae-Eun;Hong, Seung-Mo;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.781-788
    • /
    • 2008
  • This study shows how to find out optimum co-substrate conditions and continuous operating parameters for maximum acidification of three different organic wastes - livestock wastewater, sewage sludge and food waste. Design of experiments and statistical analysis were revealed as appropriate optimization schemes in this study. Analyses of data obtained from batch tests demonstrated the optimum substrate mixing ratio, which was determined by maximum total volatile fatty acids(TVFA) increase and soluble chemical oxygen demand(SCOD) increase simultaneously. Suggested optimum mixing ratio of livestock wastewater, sewage sludge and food waste was 0.4 : 1.0 : 1.1 based on COD, respectively. Response surface methodology(RSM) contributed to find out optimum operating parameter - hydraulic retention time(HRT) and substrate concentration - for the semi-continuous acidogenic fermentation of mixed organic wastes. The optimum condition for maximum TVFA increase was 2 days of HRT and 29,237 mg COD/L. Empirical equations obtained through regression analysis could predict that TVFA increase would be 73%. To confirm the validity of the statistical experimental strategies, a confirmation experiment was conducted under the obtained optimum conditions, and relative error between theoretical and experimental results was within 4%. This result reflects that using statistical and RSM technique can be effectively used for the optimization of real waste treatment processes.

Treatment of Seafood Wastewater Using AO$_2$ System with PU-AC Media (담체가 첨가된 AO$_2$공법을 이용한 수산물 가공폐수의 처리)

  • Lee, Soon;Park, Sang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.666-672
    • /
    • 2008
  • Feasibility of simultaneous removal of organic matter, nitrogen and phosphorus was evaluated by applying AO$_2$ system to treat wastewater from a seafood processing plant. Treatability test was conducted by incorporating activated sludge from municipal sewage treatment plant with PU-AC media. Inflow concentrations of COD, TN, and TP were 198$\sim$1,240 mg/L, 75$\sim$577.4 mg/L, and 2.2$\sim$53.5 mg/L, respectively. Average removal efficiencies and outflow concentration of COD, TN, and TP were 86.5%, 65.7 mg/L; 81.4%, 53.1 mg/L; and 80.6% 4.07 mg/L, respectively. Stable operation was possible by increasing organic matter, nitrogen, and phosphorus loading rate to seafood wastewater treatment system composed of anaerobic and aerobic reactors. Used PU-AC media was proved to be biodegradable in this AO$_2$ system by maintaining high biomass concentration in the PU-AC media.

Biogas Production and Utilization Technologies from Organic Waste (유기성폐기물을 이용한 바이오가스 생산 및 활용기술)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.21-30
    • /
    • 2008
  • Anaerobic digestion (AD) is the most promising method of treating and recycling of different organic wastes, such as OFMSW, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. degradation in the absence of oxygen, organic material is decomposed by anaerobes forming degestates such as an excellent fertilizer and biogas, a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to producing renewable energy and to reducing $CO_2$ and other GHG emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. A classification of the basic AD technologies for the production of biogas can be made according to the dry matter of biowaste and digestion temperature, which divide the AD process in wet and dry, mesophilic and thermophilic. The biogas produced from AD plant can be utilized as an alternative energy source, for lighting and cooking in case of small-scale, for CHP and vehicle fuel or fuel in industrials in case of large-scale. This paper provides an overview of the status of biogas production and utilization technologies.

  • PDF

혐기성 생물막 반응기의 기질 농도 변화에 따른 생물막 부착 특성 관찰

  • Lee, Seung-Ran;Lee, Deok-Hwan;Kim, Do-Han;Park, Yeong-Sik;Song, Seung-Gu
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.521-524
    • /
    • 2001
  • The anaerobic continuous reactor, which was filled with a sludge of anaerobic digestion from Sooyoung sewage treatment plant, was supplied with synthetic wastewater of various concentration. After changing to substrate concentration, 디 1is research indicated that attached biomass was kept constant after attachment 23 days. In SEM photographs. shape and structure of biofilm could be observed, but bacteria species and methanogens were not identified. A large number of methanogenic bacteria were showed on the surface of PE substratum by fluorescence under 480nm of radiation.

  • PDF