• Title/Summary/Keyword: sewage treatment sludge

Search Result 399, Processing Time 0.024 seconds

An Application of the NPR Process for the Treatability Improvement of an Existing Sewage Treatment Plant (기존 하수처리장 성능개선을 위한 NPR공정의 적용)

  • Moon, Tae Hoon;Ko, Kwang Baik;Song, Eui Yeol
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.756-760
    • /
    • 2007
  • Most of the sewage treatment plants in Korea are being operated by using the conventional activated sludge process. Recently, as the water criteria have been strict with regard to such main culprits of eutrophication, the existing sewage treatment plants are obliged to upgrade their treatment technology to meet the criteria. Under such circumstances, this study was aimed at analyzing the conditions of an existing sewage treatment plants in Korea, and thereupon, test its treatment performance for the actual sewage water by operating a pilot plant. When the pilot plant was operated with the NPR process at the capacity of $30m^3/day$, the average contents of BOD, $COD_{Mn}$, SS, T-N and T-P in the effluents were 7.0 mg/L, 9.7 mg/L, 5.1 mg/L, 8.0 mg/L and 0.23 mg/L, respectively, which were very stable in general. Accordingly, if the NPR process used for this pilot plant to upgrade the treatment technology for the sewage treatment plat could be adopted, the effluent water quality criteria effective beginning from 2008 would be met.

Formation Characteristics of Disinfection By-Products using Chlorine Disinfection in Sewage Effluent (하수 염소 소독시 소독부산물 발생 특성)

  • Beck, Young-Seog;Song, Min-Hyung;Jung, Kyung-Hun;Kwon, Dong-Sik;Lee, Gi-Gong
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.275-280
    • /
    • 2004
  • This study was performed to investigate the disinfection efficiency and the formation characteristics of disinfection by-products(DBPs) by chlorination in the sewage effluent. The effluent was sampled from the sewage treatment plants operated in the activated sludge process and the advanced sewage process. The type of DBPs investigated were Trihalomethanes(THMs), Dichloroacetonitrile(DCAN), Chloral hydrate(CH), Dichloroacetic acid(DCAA), Trichloroacetic acid(TCAA). Major findings are as follows. First, the optimum injection concentration for chlorination in sewage effluent were found to be in the range $0.5{\sim}1.0mg\;cl_2/L$. Also, It was found that the chlorine dosage in the effluent of activated sludge process was higher than in the effluent of advanced sewage process. Second, the maximum formation concentration of THMs were $12.7{\mu}g/L$. The THMs formation reaction was finished in a short time of several seconds and chloroform was mainly formed. Also, it was found that the concentration of ammonium nitrogen is higher, the concentration of THMs is lower. Third, it was found that DCAA and TCAA were mainly formed as DBPs by disinfection.

Investigation on management conditions for vermicomposting of night soil in Field at N Sewage Water plant (N하수처리장 정화조.분뇨케익의 재활용을 위한 지렁이 사육 조건검토)

  • Kim, K.Y.;Lee, C.B.;Choi, H.G.;Phae, C.G.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.102-113
    • /
    • 2000
  • This study was conducted to investigate the expandibility of sludge treatment by earthworm through real scale experiment and the optimum counter-plan for organic sludge treatment. For the purposes, sludge removal efficienciesof night-soil using earthworm and it's behavior according to the transplanting methods of the earthworm on non-cover worm bed or in the green house worm bed were compared. Sludge uptake rates on non-cover worm bed for 6 months were $0.27{\sim}0.33ton/m^2$ and the excrement of earthworm yields $0.15ton/m^2$(44.1~46.7% of raw night soil sludge dosage). These results were not much different from the worm bed in the green house. The average and maximum earthworm density were about $6.5kg/m^2$ and $7kg/m^2$ respectively on the non-cover worm bed. The density of the worm bed was comparatively higher in spring and fall terms but lower in summer. The amount of old earthworm was much plenty than young earthworm on the non-cover worm bed, resulting in reverse distribution type of pyramid. From the experiments on non-cover worm bed(7,000 pyeong)and in the green house worm bed(1,200 pyeong), it was concluded that landfill and transporting cost could be reduced when the earthworm was applied for the night-soil sludge treatment. Profits from the excrement sale of earthworm was 9,600,000 won. Through this study, it was founded that earthworm treatment method for organic sludge are much more environmentally sound than landfill treatment.

  • PDF

Efficient Treatment of Sewage Sludge by Effective Microorganisms (유효미생물에 의한 하수슬러지의 효율적 처리)

  • Choi, Chung-Sig;Joo, Gil-Jae;Lee, Dong-Hoon;Choi, Choong-Lyeal;Rhee, In-Koo;Choi, Jyung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.17
    • /
    • pp.45-52
    • /
    • 1999
  • This study was conducted to evaluate the effects of microbial inoculation on sewage sludge composting. The number and species of microorganisms in sewage sludge sampled on February were higher than those sampled on August. The composting of sewage sludge is inhibited by the polyacrylamide cation, which was used as a coagulant and known to repress the growth of microorganisms. The growth of all microorganisms was inhibited by the addition of the polyacrylamide cation at a concentration of more than 0.8%. The species and viable counts of microorganisms were observed to increase during composting sewage sludge by inoculation of the effective microorganisms and addition of the pine tree sawdust as a bulking agent, compared with those without inoculation. A variety of organisms in compost(sewage sludge plus sawdust) were observed after composting for 30 days, such as Fragilaria sp., Proales sp., Vorticella sp., Schizothrix sp., Anabaena sp., Zoothaminium sp., Epstylis sp., Arcella sp., Balantidium sp., Actinophrys sp., Synedra sp., Euglypha sp., Ulothrix sp., Anacystis sp., and Clostium sp.

  • PDF

Evaluation of the Physical Properties for Lightweight Bricks Made from Sewage Sludge and Wasted Glass (하수슬러지로 제조한 경량 벽돌의 물성평가)

  • Jeong, Jae-Ah;Son, Yeong-Geum;Lee, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.781-784
    • /
    • 2013
  • Ocean dumping of sewage sludge is banned. Therefore, it is needed to develop alternative treatment method. Sewage sludge and waste glass are used to prepare lightweight brick. Large amount of energy is consumed to prepare building material, because of its high preparation temperature, or above $1,200^{\circ}C$. We study to prepare lightweight brick, using sewage sludge and waste glass as raw materials in this research. Lightweight brick was made at low temperature of below $800^{\circ}C$ to reduce $CO_2$ emission by geopolymer technique. Calcination temperature, mixing ratio of sewage sludge/waste glass and water glass/water were discussed to evaluate their effect on the brick prepared. In this study, the optimal conditions for preparing bricks was $750^{\circ}C$ of firing temperature, 1.5 of mixing ratio for water glass/water and 10 : 90 wt% of sewage sludge/waste glass. At this condition, compressive strength and specific gravity of brick prepared were 5.1 MPa and 0.46, respectively. These values satisfy the criteria on a lightweight brick.

Study on the Co-firing of Sewage Sludge to a 80 kWth-scale Pulverized Coal Combustion System (80 kWth급 미분탄 연소 시스템에서 하수슬러지 혼소시 연소 특성 연구)

  • Chae, Taeyoung;Lee, Jaewook;Lee, Youngjae;Yang, Won
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.74-80
    • /
    • 2019
  • Thermochemical treatment of sewage sludge is an energy-intensive process due to its high moisture content. To save the energy consumed during the process, the hydrothermal carbonization process for sewage sludge can be used to convert sewage sludge into clean solid fuel without pre-drying. This study is aimed to investigate co-firing characteristics of the hydrothermally carbonated sewage sludge (HCS) to a pulverized coal combustion system. The purpose of the measurement is to measure the pollutants produced during co-firing and combustion efficiency. The combustion system used in this study is a furnace with a down-firing swirl burner of a $80kW_{th}$ thermal input. Two sub-bituminous coals were used as a main fuel, and co-firing ratio of the sewage sludge was varied from 0% to 10% in a thermal basis. Experimental results show that $NO_x$ is 400 ~ 600 ppm, $SO_x$ is 600 ~ 700 ppm, and CO is less than 100 ppm. Experimental results show that stable combustion was achieved for high co-firing ratio of the HCS. Emission of $NO_x$ and $SO_x$ was decreased for higher co-firing ratio in spite of the higher nitrogen contents in the HCS. In addition, it was found that the pollutant emission is affected significantly by composition of the main fuel, regardless of the co-firing ratios.

A study of on site Pilot plant test of drying sewage sludge using Chain crusher flash dryer (타격기류 건조장치에 의한 하수슬러지의 건조 실증실험에 관한 연구)

  • Ahn, June-Shu;Kim, Byung-Tae;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5628-5636
    • /
    • 2012
  • Effective drying method of sewage sludge is researched in this study. To dry the sludge, chain crusher flash dryer was adopted to remove moisture content in the cell which is mostly responsible for the sludge moisture content. And Pilot plant experiment was conducted in real life sewage treatment plant to study effect and characteristics of operating conditions. Operating variables include sludge feeding rate, rotational speed of chain, process temperature and feed moisture content. As rotational speed of chain increased, product yield of sludge increased, and the performance of the testing system increased. And, as process temperature increased, the sludge drying efficiency increased. It is found that optimum feed moisture content is at 60% which shows the maximum sludge product yield and about 10 moisture content(%) of sludge product. Sludge feed rate showed optimal value, and when the sludge feed rate is exceeded, sludge product yield did not increased but the amount of residue increased. Pilot plant experiment results are as follow. The optimal condition for the rotational speed of chain 1600rpm(max. speed), final sludge discharge temperature $80^{\circ}C$, feed moisture content 60%, and feed rate 60kg/h. When the plant was operated at the optimal conditions, the final product showed fairly good results such as sludge product yield 85.5%, moisture content 11.0% and sludge drying efficiency 81.7%.

A Study on the Odor Removal Characteristics of sewage sludge using Bacillus sp. (바실러스균을 이용한 하수 슬러지의 악취 제거 특성에 대한 연구)

  • Sung, Il-Wha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.1-8
    • /
    • 2016
  • This study assessed the feasibility of odor removal by the application of Bacillus sp. that has many advantages in sewage treatment to sewage sludge. The NH3 removal rates in the treatment of primary sludge using only aeration were measured at 24, 48, and 72 hours of treatment and the results were 12.5 %, 12 %, and 42.1 %, respectively. The NH3 removal rates of a reactor injected with BIO-CLOD made by solidifying Bacillus sp. concentrated 10 % together with other substances were measured after 24, 48, and 72 hours of treatment and the results were 43 %, 70 %, and 81 % respectively. In the cases where the Bacillus sp. cultured in NB medium was injected into the primary sludge reactor to reach injection rates of 0 %, 1.7 %, 3.3 %, and 6.7(v/v%), the TVOC removal rates measured when 72 hours had passed after the injection were 59 %, 71 %, 88 %, and 98 % respectively, which were higher than the NH3 removal rates as the NH3 removal rates measured at the same time were shown to be 29 %, 25 %, 31 %, and 48 %, respectively. In the sludge dewaterability conducted with various Bacillus sp. injection concentrations, a Bacillus sp. concentration of 4(v/v%) was considered to be suitable. The Bacillus sp. concentrations and reduction in the bad odor substances were correlated with each other. The results showed that aeration and Bacillus sp. injection will assist biological oxidation so that the bad odor substances can be removed. Based on the SRF values of the primary sludge and digested sludge, in which Alum and PAC were used, the appropriate amount of Alum aggregate reagent was judged to be 500 mg/L, and when PAC was used, 6 mg/L was judged to be appropriate.

Study properties of soft subgrade soil stabilized by sewage sludge/lime and nano-SiO2

  • Lin, Deng-Fong;Luo, Huan-Lin;Chen, Chien-Ta;Cai, Ming-Du
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.793-806
    • /
    • 2016
  • The pozzolanic characteristics of a sludge incinerated into ash were determined in this study. Lime is commonly used as a stabilizer for the treatment of soils, whereas sewage sludge ash (SSA) is often applied with lime to improve soft subgrade soil. In this study, a cohesive soil categorized as A-4 (low-plasticity clay) by AASHTO classifications was mixed with SSA/lime with a 3:1 ratio. Nano-$SiO_2$ was also added to the soil. To identify changes in the workability, strength, permeability, and shear strength of the soft subgrade soil, basic soil tests were conducted, and the microstructure of the treated soil was analyzed. The results indicate that SSA/lime mixtures improve the properties of soft subgrade soil and transform the soil from "poor subgrade soil" to "good to excellent subgrade soil" with a CBR > 8. Additionally, the addition of 2% nano-$SiO_2$ increases the unconfined compressive strength of soft subgrade soil treated with SSA/lime mixture by approximately 17 kPa. However, the swelling of the treated soil increased by approximately 0.1% after the addition of nano-$SiO_2$ and lime. Thus, soil swelling should be considered before lime and nano-$SiO_2$ are applied to soft subgrade soil.

A Study on the Viscosity Characteristics of Dewatered Sewage Sludge according to Thermal Hydrolysis Reaction (열가용화 반응에 의하여 탈수된 하수슬러지의 점도 특성에 관한 연구)

  • Song, Hyoung Woon;Han, Seong Kuk;Kim, Choong Gon;Shin, Hyun Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.1
    • /
    • pp.27-34
    • /
    • 2014
  • demand for a low-cost treatment technology is high because the sewage sludge has an 80% or higher water content and a high energy consumption cost. This study apply the thermal hydrolysis reaction that consumes a small amount of energy for sludge treatment. The purpose of this study is to quantify the viscosity of sewage sludge according to reaction temperature. we measured continuously the torque of dewatered sludge by the reaction temperature. As the reaction temperature increased, the dewatered sludge is thermal hydrolysis under a high temperature and pressure. Therefore, the bond water in the sludge cells comes out as free water, which changes the dewatered sludge from a solid phase to slurry of a liquid phase. The results of the viscosity measurements according to the reaction temperature showed that the viscosity was very high at $270,180kg/m{\cdot}sec$ at a temperature of 293K, but rapidly decreased with increases in the reaction temperature to $12kg/m{\cdot}sec$ at a temperature of 400K and to $4kg/m{\cdot}sec$ at a temperature of 460K or higher, similar to the changes in the viscosity of water. And we was obtained the viscosity function of boundary condition for the optimal design of thermal hydrolysis reactor by numerical modeling based on the this results.